The information in this document pertains to use in the UNITED STATES ONLY, Allowable Stress Design. Refer to the ALLJOIST ${ }^{\circledR}$ Specifier Guide Canada for use in Canada, Limit States Design.

ALHoist

 SPECIFIER GUIDE Includes AJS ${ }^{\circledR}$ 140/150/20/190/25 and VERSA-LAM® BEAMS> 2×3 Flanges AUS $140 / 150 / 20 / 190$ 2×4 Fanges AJS 25

Boise Cascade Engineered Wood Products

US Version

product manufactured in St. Jacques, New Brunswick Canada

It's the SIMPLE FRAMING SYSTEM ${ }^{\circledR}$, featuring beams, joists and rim boards that work together as a system, so you spend less time cutting and fitting. In fact, the SIMPLE FRAMING SYSTEM ${ }^{\circledR}$ uses fewer pieces and longer lengths than conventional framing, so you'll complete jobs in less time.

You'll Build Better Homes with the
 SIMPLE FRAMING SYSTEM ${ }^{\circledR}$

Now it's easier than ever to design and build better floor systems. When you specify the SIMPLE FRAMING SYSTEM ${ }^{\oplus}$, your clients will have fewer problems with squeaky floors and ceiling gypsum board cracks. The SIMPLE FRAMING SYSTEM ${ }^{\circledR}$ also means overall better floor and roof framing than dimension lumber allows.

Better Framing
Doesn't Have to Cost More
Boise Cascade Engineered Wood Products' SIMPLE FRAMING SYSTEM ${ }^{\circledR}$ often costs less than conventional framing methods when the resulting
reduced labor and materials waste are considered. There's less sorting and cost associated with disposing of waste because you order only what you need. Although our longer lengths help your clients get the job done faster, they cost no more.

Environmentally Sound

As an added bonus, floor and roof systems built with AJS ${ }^{\circledR}$ Joists require about half the number of trees as those built with dimension lumber. This helps you design a home both you and future generations will be proud to own.

What Makes the SIMPLE FRAMING SYSTEM ${ }^{\circledR}$ So Simple?
■ Floor and Roof Framing with ALLJOIST ${ }^{\circledR}$ Product
Light in weight, but heavy-duty, ALLJOIST ${ }^{\oplus}$ Product (AJS ${ }^{\circledR}$ Joists) have a better strength / weight ratio than dimension lumber. Knockouts can be removed for cross-ventilation and wiring.

V Ceilings Framed with AJS ${ }^{\circledR}$ Joists
The consistent size of AJS ${ }^{\circledR}$ Joists helps keep gypsum board flat and free of unsightly nail pops and ugly shadows, while keeping finish work to a minimum.

V VERSA-LAM ${ }^{\circledR}$ Beams for Floor and Roof Framing
These highly-stable beams are free of the large-scale defects that plague dimension beams. The result is quieter, flatter floors (no camber) and no shrinkage-related call-backs.

V BOISE CASCADE ${ }^{\circledR}$ Rimboard
Boise Cascade Engineered Wood Products offer several engineered rimboard products regionally, including BOISE CASCADE ${ }^{\circledR}$ Rimboard OSB, BOISE CASCADE ${ }^{\oplus}$ Rimboard and VERSA-RIM ${ }^{\ominus}$ (check supplier or Boise Cascade EWP representative for availability). These products work with AJS ${ }^{\circledR}$ Joists to provide a solid connection at the critical floor/wall intersection.

ALLJOIST ${ }^{\circledR}$ Product Profiles, Architectural Specifications About Floor Performance, AJS ${ }^{\circledR}$ Residential Floor Span Tables, One Hour Floor/Ceiling Assembly Safety Warning
28
VERSA-LAM Beam Details, Muliple Member Connectors.30
VERSA-AM So Roolo Thas (115 Loa Dulio)32
VERSA-LAM ${ }^{\circledR}$ Allowable Nailing and Design Values 33
Computer Software 35Framing Connectors - USP Structural Connectors ${ }^{\circledR}$38-39
Lifetime Guarantee

available in the $\mathrm{ALLJOIST}^{\circledR}$ Commercial Guide

ALLJOIST® Product Architectural Specifications

EVALUATION SUBJECT: AJS® Series Prefabricated Wood I-Joists

1.0 Evaluation Scope:

Compliance with the following codes:

- International Building Code ${ }^{\circledR}$ (IBC)
- International Residential Code ${ }^{\circledR}$ (IRC) Properties Evaluated: Structural.
2.0 Uses: The AJS® Joists are prefabricated wood I-joists used as floor joists, roof rafters and blocking panels, to support code-required loads. Prefabricated wood I-joists described in this report comply with Section 2303.1.2 of the IBC and Section R502.1.4 of the IRC, for allowable stress design.
3.0 Description:
3.1 General: The AJS® ${ }^{\circledR}$ Series prefabricated wood I-joists have solid-sawn lumber or composite lumber flanges and oriented strand board (OSB) webs. The top and bottom flanges are parallel, creating constantdepth joists. The web-to-web joints of the I-joists are square butt joints and conform to the specifications in the approved quality control manuals. The web-toflange connection is a proprietary grooved connection, also conforming to the approved quality control manuals. The I-joists are available in various lengths and depths. See ESR-1144 Table 1 for full description of the AJS 1 -Joists.
3.2 Material Specifications:
3.2.1 Flanges: The flanges of the I-joists are sawn lumber or composite lumber conforming to the specifications in the approved quality control manuals. The composite lumber flanges are $1^{11 / 2}$ inch by $21 / 2$ inch (38 by 64 mm) spruce-
pine-fir (SPF) and are used interchangeably with any of the sawn lumber flanges of the same dimensions. The sawn lumber flange material, grade, width and depth are noted in ESR-1144, Table 1.
3.2.2 Web: Web material for the I-Joists is $3 / 8$-inchthick $(10 \mathrm{~mm})$ or $7 / 16$-inch-thick (11 mm) OSB conforming to Exposure 1 requirements of DOC PS-2, with further requirements set forth in the approved quality control manuals and manufacturing standards.
3.2.3 Adhesive: Adhesives used in the fabrication of the I-joists are exterior-type, heat durable adhesives complying with ASTM D 2559 and ASTM D 5055, and are specified in the quality control manuals and the manufacturing standards.
4.0 Design and Installation: Design of the prefabricated wood I-joists described in this report shall be in accordance with the applicable code. Additionally, the design and installation of the prefabricated wood I-joists shall comply with Sections 4.1 through 4.12 listed in ESR-1144 which include 4.1 Allowable Structural Capacity, 4.2 Fasteners, 4.3 Web Stiffeners, 4.4 Lateral Support, 4.5 Holes in I-Joist Web, 4.6 Duration of Load, 4.7 In -Service Moisture Conditions, 4.8 RepetetiveMember Use, 4.9 Member Spans, 4.10 Deflection, 4.11 Blocking Panels, \& 4.12 Cantilevered Joists, and the manufacturer's installation instructions.
5.0 Conditions of Use: The AJS® Series I-joists described in this report comply with, or are suitable alternatives to what is specified in, those codes listed under ESR-1144, Section 1.0 Evaluation Scope of these specifications, subject to the following conditions:
5.1 AJS $^{\circledR}$ joists must be installed in accordance with this report and the manufacturer's installation instructions.
5.2 Drawings and design details verifying compliance with this report must be submitted to the code official when requested. The drawings and calculations must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
5.3 Flanges of the l-joist may not be cut or notched, unless an engineered design prepared by a registered design professional is submitted to the code official for approval.
5.4 The AJS ${ }^{\circledR}$ joists are manufactured by Boise Cascade Wood Products, L.L.C. at their plant in St. Jacques, New Brunswick, Canada under an approved quality control program with inspections by APA - The Engineered Wood Association (AA-649).
6.0 Evidence Submitted:

Data in accordance with the ICC-ES Acceptance Criteria for Prefabricated Wood I-joists (AC14), dated February 2013.
7.0 Identification:

AJS® I-joists are identified by a stamp indicating the joist model; company name (Boise Cascade Wood Products, L.L.C.); manufacturing location; evaluation report number (ESR-1144); and the name and logo of the inspection agency (APA).
AJS ${ }^{\circledR}$ Joists in Commercial Projects: The 18" and deeper depth AJS ${ }^{\otimes}$ joists are intended for commercial projects with heavier design loads and longer spans. All commercial projects utilizing AJS ${ }^{\circledR}$ joists shall have an engineer or architect of record.

Boise Cascade Engineered Wood Products

About Floor Performance

Homeowner's expectations and opinions vary greatly due to the subjective nature of rating a new floor. Communication with the ultimate end user to determine their expectation is critical. Vibration is usually the cause of most complaints. Installing lateral bridging may help; however, squeaks may occur if not installed properly. Spacing the joists closer together does little to affect the perception of the floor's performance. The most common methods used to increase the performance and reduce vibration of wood floor systems is to
increase the joist depth, limit joist deflections, glue and screw a thicker, tongue-and-groove subfloor, install the joists vertically plumb with level-bearing supports, and install a direct-attached ceiling to the bottom flanges of the joists.
The floor span tables listed below offer three very different performance options, based on performance requirements of the homeowner.

Joist Depth	$\begin{gathered} \text { ALLJOIST® } \\ \text { Series } \end{gathered}$	$\star \star \star$ THREE STAR $\star \star \star$				$\star \star \star \star$ FOUR STAR $\star \star \star \star$				CAUTION	MINIMUM LOWED	TIFFNESS CODE \star	CAUTION
		Live Load deflection limited to L/480: The common industry and design community standard for residential floor joists, 33\% stiffer than L/360 code minimum. However, floor performance may still be an issue in certain applications, especially with $9^{1 / 2 "}$ and $11^{7} / 8^{\prime \prime}$ deep joists without a direct-attached ceiling.				Live Load deflection limited to L/960+: A floor that is 100% stiffer than the three star floor. A premium floor that 100\% stiffer than the 3-star floor for the discriminating homeowner.				Live Load deflection limited to L/360: Floors that meet the minimum building code L/360 criteria are structurally sound to carry the specified loads; however, there is a much higher risk of floor performance issues. This table should only be used for applications where floor performance is not a concern.			
		$\begin{aligned} & \hline 12 " \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & \hline 16 " \\ & \text { o.c. } \end{aligned}$	$\begin{gathered} \hline 19.2 " \\ \text { o.c. } \end{gathered}$	$\begin{aligned} & 24 " \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & \hline 12 " \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & \hline 16 " \\ & \text { o.c. } \end{aligned}$	$\begin{gathered} \hline 19.2^{\prime \prime} \\ \text { o.c. } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 24^{\prime \prime} \\ & 0 . c . \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & 16 " \\ & \text { o.c. } \end{aligned}$	$\begin{gathered} 19.2^{\prime \prime} \\ \text { o.c. } \end{gathered}$	$\begin{aligned} & 24 " \\ & \text { o.c. } \\ & \hline \end{aligned}$
91/2"	140	17'-9"	16'-3"	15'-4"	13'-11"	13'-11"	12'-8"	11'-11"	11'-1"	19'-8"	17'-0"	15'-6"	13'-11"
	150	18'-1"	16'-7"	15'-8"	14'-7"	14'-2"	12'-11"	12'-2"	11'-3"	20'-0"	18'-3'	16'-8"	14'-11"
	20	19'-1"	17'-5"	16'-5"	15'-4"	14'-10"	13'-6"	12'-9"	11'-10"	21'-1"	19'-3"	18'-2"	16'-4"
	190	19'-4"	17'-8"	16'-8"	15'-6"	15'-1"	13'-9"	12'-11"	12'-0"	21'-4"	19'-7"	18'-6"	17'-3"
	25	21'-0"	19'-1"	18'-0"	16'-9"	16'-4"	14'-10"	14'-0"	12'-11"	23'-2"	21'-1"	19'-3"	17'-2"
117/8"	140	21'-2"	19'-4"	17'-8"	15'-10"	16'-7"	15'-1"	14'-3"	13'-3"	22'-5"	19'-5"	17'-8"	15'-10"
	150	21'-7"	19'-8"	18'-7"	17'-0"	16'-10"	15'-4"	14'-6"	13'-5"	23'-10"	20'-10"	19'-0"	17'-0"
	20	22'-8"	20'-9"	19'-7"	18'-3"	17'-9"	16'-2"	15'-2"	14'-1"	25'-1"	22'-10"	20'-10"	18'-8"
	190	23'-0"	21'-0"	19'-10"	18'-6"	18'-0"	16'-4"	15'-5"	14'-4"	25'-5"	23'-3"	21'-11"	19'-0"
	25	24'-11"	22'-9"	21'-5"	18'-3"	19'-6"	17'-8"	16'-8"	15'-5"	27'-7"	24'-0"	21'-11"	18'-3"
14"	140	24'-0"	21'-4"	19'-5"	17'-4"	18'-10"	17'-2"	16'-2"	15'-0"	24'-7"	21'-4"	19'-5"	17'-4"
	150	24'-6"	22'-4"	20'-11"	18'-9"	19'-2"	17'-6"	$16^{\prime}-5{ }^{\prime \prime}$	15'-3"	26'-6"	22'-11"	20'-11"	18'-9"
	20	25'-9"	23'-6"	22'-2"	19'-1"	20'-2"	18'-4"	17'-3"	16'-0"	28'-5'	25'-1"	22'-11"	19'-1"
	190	26'-1"	23'-10"	22'-6"	19'-1"	20'-5'	18'-7"	17'-6"	16'-3"	28'-10"	26'-4"	23'-11"	19'-1"
	25	28'-4"	25'-10"	22'-11"	18'-4"	22'-1"	20'-1"	18'-11"	17'-6"	30'-5'	26'-4"	22'-11"	18'-4"
16"	140	26'-6"	22'-11"	20'-11"	18'-9"	20'-10"	19'-0"	17'-11"	16'-8"	26'-6"	22'-11"	20'-11"	18'-9"
	150	27'-1"	24'-7"	22'-5"	19'-3"	21'-3"	19'-4"	18'-3'	16'-11"	28'-5"	24'-7"	22'-5"	19'-3"
	20	28'-6"	26'-0"	24'-2"	19'-3"	22'-4"	20'-4"	19'-1"	17'-9"	31'-3"	27'-0"	24'-2"	19'-3"
	190	28'-11"	26'-5"	24'-2"	19'-3"	22'-8"	20'-7"	19'-5"	18'-0"	31'-11"	28'-11"	24'-2"	19'-3"
	25	31'-4"	27'-10"	23'-2"	18'-6"	24'-6"	22'-3"	20'-11"	18'-6"	32'-9"	27'-10"	23'-2"	18'-6"

Table values based on residential floor loads of 40 psf live load and 10 psf dead load (12 psf - Floor tile will increase dead load and may require specific deflection limits, contact Boise dead load for AJS ${ }^{\circledR} 25$ joists).

- Table values assume that ${ }^{23} / 32^{\prime \prime}$ min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports. Analyze multiple span joists with BC CALC ${ }^{\circledR}$ sizing software if the length of any span is less than half the length of an adjacent span.
Table values assume minimum bearing lengths without web stiffeners for joist depths of 16" inches and less.

One-Hour Floor/Ceiling Assembly

See the US version of the Boise Cascade Fire Design \& Installation Guide for specific assembly information and other fire resistive options or contact your local Boise Cascade representative.

FIRE ASSEMBLY COMPONENTS

1. Min. ${ }^{23} / 32$-inch T\&G Wood Structural Panels. A construction adhesive must be applied to the top of the joists prior to placing sheathing. The sheets shall be installed with their long edge perpendicular to the joists with end joists centered over the top flange of joists and staggered one joist spacing with adjacent sheets.
2. AJS ${ }^{\circledR}$ Joists at 24 " o.c. or less.
3. Two layers $1 / 2^{\prime \prime}$ Type C or two layers $5 / 8$ " Type X gypsum board

SOUND ASSEMBLY COMPONENTS

When constructed with resilient channels

- Add carpet \& pad to fire assembly:

- Add $31 / 2^{\prime \prime}$ glass fiber insulation to fire assembly:
- $\quad \overline{\text { Add }}$ an additional layer of minimum $5 / 8^{\prime \prime}$ sheathing and $91 / 2$ glass fiber insulation to fire assembly:

STC=54	IIC=68
STC=55	IIC=46
STC=61	IIC=50

NOTE
The illustration below is showing several suggested applications for the Boise Cascade EWP products. It is not intended to show an actual house under construction.
NO MIDSPAN BRIDGING IS REQUIRED FOR ALLOIST ${ }^{\circledR}$ PRODUCT

FOR INSTALLATION STABILITY, Temporary strut lines (1x4 min.) 8 ' on center max. Fasten at each joist with $2-8 d$ nails minimum.

Dimension lumber is not suitable for use as a rim board in ALLUOIST ${ }^{\circledR}$ floor systems.
AJS ${ }^{\circledR}$ rim joist.
See page 6.
AJS ${ }^{\circledR}$ rim joist.
See page 6.

AJS ${ }^{\circledR}$ blocking or 2×4 "squash" block on each side required when supporting a load-bearing wall above.

When installing Boise Cascade EWP products with treated wood, use only connectors/fasteners that are approved for use with the corresponding wood treatment.

BOISE CASCADE ${ }^{\oplus}$ Rimboard. See pages 6 and 27.

For load bearing cantilever details, see page 9.

Additional floor framing details available with BC FRAMER® software (see page 35)

(

LATERAL SUPPORT

- AJS ${ }^{\circledR}$ Joists must be laterally supported at the ends with hangers, AJS ${ }^{\circledR}$ rim joists, rim boards, AJS ${ }^{\circledR}$ blocking panels or x-bracing. AJS ${ }^{\circledR}$ blocking panels or x-bracing are required at cantilever supports.
- Blocking may be required at intermediate bearings for floor diaphragm per IRC in high seismic areas, consult local building official.
MINIMUM BEARING LENGTH FOR AJS ${ }^{\circledR}$ JOISTS
- $1 \frac{1}{2}$ inches is required at end supports. $31 / 2$ inches is required at cantilever and intermediate supports.
- Longer bearing lengths allow higher reaction values. Refer to the building code evaluation report or the BC CALC ${ }^{\circledR}$ software.
NAILING REQUIREMENTS
- AJS ${ }^{\circledR}$ rim joist, rim board or closure panel to AJS ${ }^{\circledR}$ Joist:
- Rims or closure panel $1 \frac{1}{4}$ inches thick and less: 2-8d nails, one each in the top and bottom flange.
- AJS ${ }^{\circledR} 140 / 150 / 20 / 190$ rim joist: 2-16d box nails, one each in the top and bottom flange.
- AJS ${ }^{\circledR} 25$ rim joist: Toe-nail top flange to rim joist with 2-10d box nails, one each side of flange.
- AJS ${ }^{\circledR}$ rim joist, rim board or AJS ${ }^{\circledR}$ blocking panel to support:
- 8d nails at 6 inches on center.
- When used for shear transfer, follow the building designer's specification.
- AJS ${ }^{\oplus}$ Joist to support:
- 2-8d nails, one on each side of the web, placed $11 / 2$ inches minimum from the end of the AJS ${ }^{\circledR}$ Joist to limit splitting.
- Sheathing to AJS ${ }^{\circledR}$ joist, rim joist, blocking:
- Prescriptive residential floor sheathing nailing requires 8d common nails @ 6" o.c. on edges and @ 12" o.c. in the field IRC Table R602.3(1). Closer nail spacing may be required per design professional of record.
- 14 gauge staples may be substituted for 8d nails if the staples penetrate at least 1 inch into the joist.
- Wood screws may be acceptable, contact local building official and/or Boise Cascade EWP Engineering for further information.
BACKER AND FILLER BLOCK DIMENSIONS

AJS ${ }^{\circledR}$ Series	Backer Block Thickness	Filler Block Thickness
140		
150	$11 / 8{ }^{\prime \prime}$ or two $1 / 2{ }^{\prime \prime}$	$2 \mathrm{x}+5 / 8 \mathrm{l}$ wood panel
20	wood panels	2x_+8/8 wood panel
190		
25	$2 x^{\prime}$ lumber	Double 2x_lumber

- Cut backer and filler blocks to a maximum depth equal to the web depth minus $1 / 4$ " to avoid a forced fit.
- For deeper AJS ${ }^{\circledR}$ Joists, stack $2 x$ lumber or use multiple pieces of $3 / 4^{\prime \prime}$ wood panels.

WEB STIFFENER REQUIREMENTS

- See Web Stiffener Requirements on page 10.

PROTECT AJS ${ }^{\circledR}$ JOISTS FROM THE WEATHER

- AJS ${ }^{\circledR}$ Joists is intended only for applications that provide permanent protection from the weather. Bundles of product should be covered and stored off of the ground on stickers.

AJS ${ }^{\circledR}$ RIM JOISTS AND BLOCKING

Joist Depth	Vertical Load Transfer Capacity (plf)
$91_{2 \prime \prime}^{\prime \prime}$	1875
$1178^{\prime \prime}$	1680
$14^{\prime \prime}$	1500
$16^{\prime \prime}$	1340

1) Web stiffeners required at each end of blocking panel. Distance between stiffeners must be less than 24 ".

AJS ${ }^{\circledR}$ Joist Hole Location \& Sizing

AJS ${ }^{\circledR}$ Joists are manufactured with $1^{11 / 2 "}$ round perforated knockouts in the web at approximately 12 " on center

Minimum distance from support, listed in table below, is required for all holes greater than $1 \frac{1}{2} 2^{\prime \prime}$ MINIMUM DISTANCE (D) FROM ANY SUPPORT TO THE CENTERLINE OF THE HOLE

Round Hole Diameter [in]			2	3	4	5	6	$61 / 2$	7	8	87/8	9	10	11	12	13
Rectangular Hole Side [in]			-	-	2	4	6	6	-	-	-	-	-	-	-	-
Any 9½" Joist	Span [ft]	8	2'-0"	2'-5"	2'-11"	3'-5"	3'-10"	4'-0"								
		12	3'-0"	3'-8"	4'-5"	5'-1'	5'-10"	6'-0"								
		16	4'-0"	4'-11"	5'-11"	6'-10"	7'-9"	8'-0"								
Round Hole Diameter [in]			2	3	4	5	6	$61 / 2$	7	8	87/8	9	10	11	12	13
Rectangular Hole Side [in]			-	-	-	2	3	4	5	7	8	-	-	-	-	-
Any $1178^{\prime \prime}$ Joist	Span [ft]	8	1'-0"	1'-5"	1'-10"	2'-3"	2'-8"	2'-11"	3'-1"	3'-6"	3'-11"					
		12	$1^{\prime \prime}-5{ }^{\prime \prime}$	2'-1"	2'-9"	$3{ }^{\prime \prime}-5 \prime$	4'-0"	4'-4"	4'-8"	5'-4"	5'-11"					
		16	1'-11"	2'-10"	3'-8"	4'-6"	5'-5"	5'-10"	6'-3"	7'-1'	7'-10"					
		20	2'-5"	3'-6"	4'-7"	5'-8"	6'-9"	7'-3"	7'-10"	8'-11"	9'-10"					
Round Hole Diameter [in]			2	3	4	5	6	61/2	7	8	87/8	9	10	11	12	13
Rectangular Hole Side [in]			-	-	-	-	2	3	3	5	6	6	8	9	-	-
Any 14" Joist	Span [ft]	8	1'-0"	1'-1"	1'-2"	1'-4"	1'-8"	1'-11"	2'-1"	2'-6"	2'-10"	2'-11"	3'-4"	3'-9"		
		12	$1^{\prime}-0 "$	1'-1"	1'-4"	2'-0"	2'-7"	2'-11"	3'-2"	3'-10"	4'-4"	4'-5"	5'-0"	5'-7"		
		16	$1^{\prime \prime}-0$	1'-1"	1'-10"	2'-8"	3'-5"	3'-10"	4'-3"	5'-1"	5'-9"	5'-11"	6'-8"	7'-6"		
		20	1'-0"	1'-3"	2'-4"	3'-4"	4'-4"	4'-10"	5'-4"	6'-4"	7'-3"	7'-4"	8'-5"	9'-5"		
		24	$1^{\prime \prime}-0 "$	1'-7"	2'-9"	4'-0"	5'-2"	5'-10"	6'-5"	7'-8"	8'-8"	8'-10"	10'-1"	$11^{\prime}-3{ }^{\prime \prime}$		
Round Hole Diameter [in]			2	3	4	5	6	$61 / 2$	7	8	87/8	9	10	11	12	13
Rectangular Hole Side [in]			-	-	-	-	-	-	2	3	5	5	6	8	9	10
$\begin{aligned} & \text { Any } \\ & 16^{\prime \prime} \\ & \text { Joist } \end{aligned}$	Span [ft]	8	1'-0"	1'-1"	1'-2"	1'-2"	1'-3"	1'-3"	1'-3"	1'-8"	2'-0"	2'-1"	2'-5"	2'-10"	3'-2"	3'-7"
		12	1'-0"	1'-1"	1'-2"	1'-2"	1'-4"	1'-8"	1'-11"	2'-6"	3'-0"	3'-1"	3'-8"	4'-3"	4'-10"	5'-5"
		16	1'-0"	1'-1"	1'-2"	1'-2"	1'-10"	2'-2"	2'-7"	3'-4"	4'-0"	4'-2"	4'-11"	5'-8"	6'-5"	7'-2"
		20	$1^{\prime \prime}-0$	1'-1"	1'-2"	1'-4"	2'-3"	2'-9"	3'-3"	4'-3"	5'-1"	5'-2"	6'-2"	7'-1'	8'-1"	9'-0"
		24	$1^{\prime \prime}-0 "$	1'-1"	1'-2"	1'-7"	2'-9"	3'-4"	3'-11"	5'-1"	6'-1"	6'-3"	7'-4"	8'-6"	9'-8"	10'-10"

Select a table row based on joist depth and the actual joist span rounded up to the nearest table span. Scan across the row to the column headed by the appropriate round hole diameter or rectangular hole side. Use the longest side of a rectangular hole. The table value is the closest that the centerline of the hole may be to the centerline of the nearest support.

- The entire web may be cut out. DO NOT cut the flanges. Holes apply to either single or multiple joists in repetitive member conditions.
- For multiple holes, the amount of uncut web between holes must equal at least twice the diameter (or longest side) of the largest hole.
- $11 / 2^{\prime \prime}$ round knockouts in the web may be removed by using a short piece of metal pipe and hammer.
- Holes may be positioned vertically anywhere in the web. The joist may be set with the $1 \frac{1}{2} 2^{\prime \prime}$ knockout holes turned either up or down.
- This table was designed to apply to the design conditions covered by tables elsewhere in this publication. Use the BC CALC ${ }^{\circledR}$ software to check other hole sizes or holes under other design conditions. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.

Reinforced Load Bearing Cantilever Tables

AJS ${ }^{\circledR}$ Joists

KEY TO TABLE

0.... No Reinforcement Required
ws Web Stiffeners at Support
1.... Web Stiffeners Plus One Reinforcer
$2 . .$. Web Stiffeners Plus Two Reinforcers
X Use Deeper Joists or Closer Spacing

Notes:

1. Cut 48" long reinforcers to match the joist depth. Use ${ }^{23 / 32 " \text { APA Rated Sheathing, }}$
Exposure 1, $48 / 24$ Span Rating panels. The face grain must be horizontal (measure the 48" dimension along the long edge of the panel).
2. Fasten the reinforcer to the joist flanges with 8 d nails at $6 "$ o. c. When reinforcing both sides, stagger the nails to avoid splitting the joist flanges.
3. Attach web stiffeners per intermediate Web Stiffener Nailing Schedule on page 10.
4. Use the BC CALC® software to analyze conditions that are not covered by this table.

- The tables and details on pages 8 and 9 indicate the type of reinforcements, if any, that are required for loadbearing cantilevers up to a maximum length of $2^{\prime}-00^{\prime \prime}$. Cantilevers longer than $2^{\prime}-0$ " cannot be reinforced. However, longer cantilevers with lower loads may be allowable without reinforcement. Analyze specific applications with the BC CALC ${ }^{\circledR}$ software.

PLYWOOD / OSB REINFORCEMENT (If Required per Table on page 8) - ${ }^{23} / 32$ " Min. x 48 " long plywood / OSB rated sheathing must match the full depth of the AJS ${ }^{\circledR}$ Joist. Nail to the AJS® Joist with 8d nails at 6" o.c. and nail with 4-8d nails into backer block. When reinforcing both sides, stagger nails to limit splitting. Install with horizontal face grain.

- These requirements assume a 100 PLF wall load and apply to AJS ${ }^{\circledR}$ Joists. Additional support may be required for other loadings. See BC CALC ${ }^{\circledR}$ software.
- Contact Boise Cascade EWP Engineering for reinforcement requirements on AJS $^{\circledR}$ Joist depths greater than 16 ".

Brick Ledge Load Bearing Cantilever

Brick Ledge With Blocking Panels

Notes:

1. Use ${ }^{23 / 32 " ~ m i n ~ p l y w o o d / O S B ~ r a t e d ~}$ sheathing. Install full depth of joist with face grain parallel to joist. Plywood reinforcement to bear fully on wall plate. Nail plywood to top and bottom joist flanges with $21 / 2^{\prime \prime}$
(8d) nails at $3^{\prime \prime}$ on center except $91 / 2^{\prime \prime}$ joists, install nails at $2^{1} / 2^{\prime \prime}$ on center.
2. Provide full depth blocking between joists.
3. Edge of hole shall be at a minimum of 3 " from end of blocking panel.

Joist Depth (inches)	Roof Truss Span (ft)	Roof Live Load (psf)											
		20 psf			30 psf			40 psf			50 psf		
		Joist Spacing o.c.											
		12"	16"	19.2"	12"	16"	19.2"	12"	16"	19.2"	12"	16"	19.2"
9½"	24'	0	0	0	0	0	1	0	1	1	0	1	1
	26^{\prime}	0	0	0	0	0	1	0	1	1	0	1	2
	28'	0	0	0	0	0	1	0	1	1	0	1	2
	30'	0	0	0	0	0	1	0	1	1	1	1	2
	32'	0	0	1	0	1	1	0	1	2	1	2	2
	34'	0	0	X	0	X	X	0	1	X	1	2	X
	36 '	0	X	X	0	X	X	1	X	X	1	X	X
117/8"	24'	0	0	0	0	0	0	0	0	0	0	0	1
	26'	0	0	0	0	0	0	0	0	0	0	0	1
	28'	0	0	0	0	0	0	0	0	1	0	1	1
	30'	0	0	0	0	0	0	0	0	1	0	1	1
	32'	0	0	0	0	0	0	0	0	1	0	1	1
	34^{\prime}	0	0	0	0	1	1	0	1	1	0	1	1
	36'	0	0	0	0	1	1	0	1	1	0	1	X
14"	24'	0	0	0	0	0	0	0	0	0	0	0	0
	26^{\prime}	0	0	0	0	0	0	0	0	0	0	0	0
	28'	0	0	0	0	0	0	0	0	0	0	0	1
	30'	0	0	0	0	0	0	0	0	0	0	0	1
	32'	0	0	0	0	0	0	0	0	0	0	0	1
	34^{\prime}	0	0	0	0	0	0	0	0	1	0	0	1
	36'	0	0	0	0	0	0	0	0	1	0	1	X

Brick Ledge Reinforcement Table

Table Design Assumptions
Roof Loading: 15 psf dead load plus a 100 PLF wall self-weight, in addition to roof live load shown. Maximum 2'-6" overhangs assumed on roof trusses.

Floor Loading: 40 psf live load plus 10 psf dead load, backspans not to exceed maximum floor spans shown on page 4.
KEY TO TABLE:
$0=$ No Reinforcement Required
1 = Reinforcement Required One Side of Joist
2 = Reinforcement Required Both Sides of Joist
x = Use Deeper Joists or Closer Spacing

AJS ${ }^{\circledR}$ Joists are intended only for applications that provide permanent protection from the weather.

Fasten the 2×8 minimum to the AJS ${ }^{\circledR}$ Joist by nailing through the backer block and joist web with 2 rows of 10 d nails at 6 " on center. Clinch all nails.

- These details apply to cantilevers with uniform loads only.
- It may be possible to exceed the limitations of these details by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.

Web Stiffener Requirements

Web Stiffener Nailing Schedule		
AJS $^{\circledR}$ Series	Joist Depth	Nailing
140	$91 / 2^{\prime \prime}-111^{\prime \prime} 8^{\prime}$	$3-10 \mathrm{~d}$
150		
20	$14 "-16 "$	$5-10 \mathrm{~d}$
25		

NOTES

- Web stiffeners are optional except as noted below.
- Web stiffeners are always required for 18 " and deeper AJS ${ }^{\circledR}$ joists at all bearing locations.
- Web stiffeners are always required in hangers that do not extend up to support the top flange of the AJS^{\circledR} Joist. Web stiffeners may be required with certain sloped or skewed hangers or to achieve uplift values. Refer to the hanger manufacturer's installation requirements.
- Web stiffeners are always required in certain roof applications. See Roof Framing Details on page 15.
- Web stiffeners are always required under concentrated loads that exceed 1000 pounds. Install the web stiffeners snug to the top flange in this situation. Follow the nailing schedule for intermediate bearings.
- Web stiffeners may be used to increase allowable reaction values. See AJS ${ }^{\circledR}$ Design Properties on page 26 of the ASG or the BC CALC ${ }^{\circledR}$ software.

Large Rectangular Holes in AJS ${ }^{\circledR}$ Joists

Hole size table based on maximum uniform load of 40 psf live load and 15 psf dead load, at maximum spacing of 24 " on-center.

		Maximum Hole Size	
$-1 / 2 \text { Joist Span } \longrightarrow \begin{aligned} & \text { Q hole } \\ & \begin{array}{l} \text { See Max Hole Size on } \\ \text { Chart for Joist Depth } \end{array} \\ & \text { widimum 2x 2x diameter/ largest hole } \end{aligned}$	Joist Depth	Simple Span	Multiple Span
奴 $\quad, \quad \rightarrow \times$	91/2"	$6 " \times 12{ }^{\prime \prime}$	$6 " \times 7$ "
	117/8"	$8{ }^{\prime \prime} \times 13$ "	$8{ }^{\prime \prime} \times 8$ "
Simple Span Joist 6'-0" Min	14"	9" $\times 16$	$8 " \times 13 "$
Notes:		$10 " \times 14 "$	$9{ }^{\prime \prime} \times 1{ }^{\prime \prime}$
Additional holes may be cut in the web provided they meet	16"	$11{ }^{\prime \prime} \times 16{ }^{\prime \prime}$	$10 "$ x 14"
above or as allowed using BC CALC ${ }^{\circledR}$ sizing software.		12 " x 15"	11 " x 12"

Multiple Span Joist

Larger holes may be possible for either Single or Multiple span joists; use BC CALC ${ }^{\circledR}$ sizing software for specific analysis.

Allowable Uniform Floor Load
 (in pounds per linear foot [PLF])

100\% Load Duration

Span Length	AJS ${ }^{\circledR} 140$ Series 2½" Flange Width								AJS ${ }^{\circledR} 150$ Series 2½" Flange Width							
	$\begin{gathered} 91 / 2 " \\ \text { AJS }{ }^{\circledR} 140 \\ \hline \end{gathered}$		$\begin{gathered} 117 / 8 " \\ \text { AJS } 140 \\ \hline \end{gathered}$		$\begin{gathered} 14 " 1 \\ \text { AJS }{ }^{\circledR} 140 \\ \hline \end{gathered}$		$\begin{gathered} 16 " \\ \text { AJS } 140 \\ \hline \end{gathered}$		$\begin{gathered} 91 / 2 " \\ \text { AJS }{ }^{\circledR} 150 \\ \hline \end{gathered}$		$\begin{gathered} 117 / /^{\prime \prime} \\ \text { AJS } 150 \\ \hline \end{gathered}$		$\begin{gathered} 14 " 1 \\ \text { AJS }^{\oplus} 150 \end{gathered}$		$\begin{gathered} 16 " \\ \text { AJS }{ }^{\circledR} 150 \end{gathered}$	
	Live Load	Total Load	Live Load	Total Load	Live Load	Total Load										
6	-	313	-	318	-	320	-	323	-	313	-	318	-	320	-	323
7	-	268	-	272	-	274	-	277	-	268	-	272	-	274	-	277
8	-	235	-	238	-	240	-	242	-	235	-	238	-	240	-	242
9	-	208	-	212	-	213	-	215	-	208	-	212	-	213	-	215
10	170	188	-	191	-	192	-	194	180	188	-	191	-	192	-	194
11	131	161	-	173	-	174	-	176	139	170	-	173	-	174	-	176
12	103	136	-	159	-	160	-	161	109	156	-	159	-	160	-	161
13	82	115	136	146	-	147	-	149	87	133	144	146	-	147	-	149
14	67	100	111	129	-	137	-	138	71	115	117	136	-	137	-	138
15	55	87	91	112	-	128	-	129	58	100	97	127	-	128	-	129
16	46	76	76	99	110	119	-	121	48	88	81	114	116	120	-	121
17			64	87	93	105	-	114	41	78	68	101	98	112	-	114
18			54	78	79	94	106	107			58	90	84	106	-	107
19			46	70	68	84	91	98			49	80	72	98	96	102
20			40	63	58	76	79	88			43	73	62	88	83	97
21					51	69	68	80					54	80	73	92
22					44	63	60	73					47	73	64	84
23							53	67					41	67	56	76
24							47	61							49	70
25							41	56							44	65
26																
27																
28																
29																
30																

- Total Load values are limited by shear, moment, or deflection equal to L/240.
- Live Load values are limited by deflection equal to L/480. For deflection limits of L/360 and L/960, multiply the Live Load values by 1.33 and 0.50 respectively.
- Both the Total Load and Live Load columns must be checked. Where a Live Load value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC ${ }^{\circledR}$ software if the length of any span is less than half the length of an adjacent span.
- Table values do not consider composite action from gluing and nailing floor sheathing (composite action is considered in floor span tables on page 4).
- Total Load values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- For assistance with floor design, consult the section About Floor Performance on page 4.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.

Allowable Uniform Floor Load (in pounds per linear foot [PLF])

100\% Load Duration

Span Length	AJS ${ }^{\circledR} 20$ Series 2½" Flange Width								AJS ${ }^{\circledR} 190$ Series 2½" Flange Width							
	$\begin{gathered} 91 / 2 " 1 \\ \text { AJS }^{\circledR} 20 \end{gathered}$		$\begin{gathered} 11 / 8^{\prime \prime} \\ \text { AJS }^{\circledR} 20 \end{gathered}$		$\begin{gathered} 14 " \\ \text { AJS }{ }^{\circledR} 20 \end{gathered}$		$\begin{gathered} 16 " \\ \text { AJS }^{\circledR} 20 \end{gathered}$		$\begin{gathered} 91 / 2 " 1 \\ \text { AJS }^{\circledR} 190 \end{gathered}$		$\begin{gathered} 117 / "^{\prime \prime} \\ \text { AJS }^{\circledR} 190 \end{gathered}$		$\begin{gathered} 14 " \\ \text { AJS }^{\circledR} 190 \end{gathered}$		$\begin{gathered} 16 " \\ \text { AJS }^{\circledR} 190 \end{gathered}$	
	Live Load	Total Load	Live Load	Total Load	Live Load	Total Load	Live Load	Total Load	Live Load	Total Load						
6	-	313	-	318	-	320	-	323	-	313	-	318	-	320	-	323
7	-	268	-	272	-	274	-	277	-	268	-	272	-	274	-	277
8	-	235	-	238	-	240	-	242	-	235	-	238	-	240	-	242
9	-	208	-	212	-	213	-	215	-	208	-	212	-	213	-	215
10	-	188	-	191	-	192	-	194	-	188	-	191	-	192	-	194
11	161	170	-	173	-	174	-	176	168	170	-	173	-	174	-	176
12	128	156	-	159	-	160	-	161	133	156	-	159	-	160	-	161
13	102	144	-	146	-	147	-	149	107	144	-	146	-	147	-	149
14	83	134	-	136	-	137	-	138	87	134	-	136	-	137	-	138
15	69	120	113	127	-	128	-	129	72	125	118	127	-	128	-	129
16	57	106	95	119	-	120	-	121	60	117	99	119	-	120	-	121
17	48	93	80	112	-	112	-	114	50	101	83	112	-	112	-	114
18	41	82	68	106	98	106	-	107	43	86	71	106	102	106	-	107
19			58	97	84	101	-	102			61	100	88	101	-	102
20			50	88	73	96	-	97			53	95	76	96	-	97
21			44	79	63	91	85	92			46	90	66	91	89	92
22					55	87	74	88			40	80	58	87	78	88
23					49	80	65	84					51	83	69	84
24					43	73	58	80					45	80	61	80
25							51	77					40	76	54	77
26							46	72							48	74
27							41	67							43	71
28																
29																
30																

- Total Load values are limited by shear, moment, or deflection equal to L/240.
- Live Load values are limited by deflection equal to L/480. For deflection limits of L/360 and L/960, multiply the Live Load values by 1.33 and 0.50 respectively.
- Both the Total Load and Live Load columns must be checked. Where a Live Load value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC ${ }^{\circledR}$ software if the length of any span is less than half the length of an adjacent span.
- Table values do not consider composite action from gluing and nailing floor sheathing (composite action is considered in floor span tables on page 4).
- Total Load values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- For assistance with floor design, consult the section About Floor Performance on page 4.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.

Allowable Uniform Floor Load

(in pounds per linear foot [PLF])

100\% Load Duration								
	AJS ${ }^{\circledR} 25$ Series 3½" Flange Width							
	$\begin{gathered} 91 / 2 " 1 \\ \text { AJS }^{\circledR} 25 \end{gathered}$		$\begin{gathered} 117 / 8^{\prime \prime} \\ \text { AJS }^{\circledR} 25 \end{gathered}$		$\begin{gathered} 14 " \\ \text { AJS }{ }^{\circledR} 25 \end{gathered}$		$\begin{gathered} 16 " \\ \text { AJS }^{\circledR} 25 \\ \hline \end{gathered}$	
Length	Live Load	Total Load						
6	-	316	-	318	-	320	-	323
7	-	271	-	272	-	274	-	277
8	-	237	-	238	-	240	-	242
9	-	211	-	212	-	213	-	215
10	-	190	-	191	-	192	-	194
11	-	172	-	173	-	174	-	176
12	-	158	-	159	-	160	-	161
13	136	146	-	146	-	147	-	149
14	111	135	-	136	-	137	-	138
15	92	126	-	127	-	128	-	129
16	77	118	-	119	-	120	-	121
17	65	111	107	112	-	112	-	114
18	55	105	91	106	-	106	-	107
19	47	95	78	100	-	101	-	102
20	41	82	68	95	-	96	-	97
21			59	90	85	91	-	92
22			52	86	74	87	-	88
23			46	83	66	83	-	84
24			40	79	58	80	78	80
25					52	76	69	77
26					46	73	62	74
27					41	71	56	71
28							50	69
29							45	66
30							41	64

AJS ${ }^{\circledR}$ Rafters

SAFETY WARNING

DO NOT ALLOW WORKERS ON AJS ${ }^{\circledR}$ JOISTS UNTIL ALL HANGERS, AJS ${ }^{\circledR}$ RIM JOISTS, RIM BOARDS, AJS ${ }^{\circledR}$ BLOCKING PANELS, X-BRACING AND TEMPORARY 1×4 STRUT LINES ARE INSTALLED AS SPECIFIED BELOW.

SERIOUS ACCIDENTS CAN RESULT FROM INSUFFICIENT ATTENTION TO PROPER BRACING DURING CONSTRUCTION. ACCIDENTS CAN BE AVOIDED UNDER NORMAL CONDITIONS BY FOLLOWING THESE GUIDELINES:

- Build a braced end wall at the end of the bay, or permanently install the first eight feet of $A J S^{\circledR}$ Joists and the first course of sheathing. As an alternate, temporary sheathing may be nailed to the first four feet of AJS ${ }^{\circledR}$ Joists at the end of the bay.
- All hangers, AJS ${ }^{\circledR}$ rim joists, rim boards, AJS ${ }^{\circledR}$ blocking panels, and x-bracing must be completely installed and properly nailed as each AJS ${ }^{\circledR}$ Joist is set.
- Install temporary 1×4 strut lines at no more than eight feet on center as additional AJS ${ }^{\circledR}$ Joists are set. Nail the strut lines to the sheathed area, or braced end wall, and to each AJS ${ }^{\circledR}$ Joist with two 8d nails.
- The ends of cantilevers must be temporarily secured by strut lines on both the top and bottom flanges.
- Straighten the AJS ${ }^{\circledR}$ Joist to within $1 / 2$ inch of true alignment before attaching strut lines and sheathing.
- Remove the temporary strut lines only as required to install the permanent sheathing.
- Failure to install temporary bracing may result in sideways buckling or roll-over under light construction loads.

AJS® Ceiling Joist with Bevel End Cut (For Limited-Access Attics Only) AJS ${ }^{\circledR}$ Joist shall not be used as collar/tension tie. Roof rafter shall be supported by ridge beam or other upper bearing support.

If roof loads transfer to ceiling joists through struts, analyze with BC CALC ${ }^{\circledR}$ software, not exceeding end reaction limit stated in Note 3 (see right).

Minimum Heel Depths	Joist Depth	End Wall	
		2×4	2×6
	9½"	$21 / 21$	$11 / 2$ "
	11/8"	31/2"	$21 / 2^{\prime \prime}$
	$14{ }^{\prime \prime}$	$41 / 21$	31/2"

Notes:

1) Detail is to be used only for ceiling joists with no access to attic space.
2) Ceiling joist must be designed to carry all roof load transferred through rafter struts as shown.
3) AJS ${ }^{\circledR}$ ceiling joist end reaction may not exceed 550 pounds.
4) Minimum roof slope is $6 / 12$.
5) Nail roof rafter to $A J S{ }^{\circledR}$ top flange with 1-16d sinker or box nail.
6) 1×4 nails shall be continuous and nailed to an end wall braced to the roof diaphragm.
7) Install a 24 " long web stiffener on each side of AJS ${ }^{\circledR}$ Joist at beveled ends. Nail roof rafter to AJS ${ }^{\circledR}$ Joist per building code requirements for ceiling joist to roof rafter connection.

Additional roof framing details available with BC FRAMER ${ }^{\circledR}$ software (see page 35)

Simpson VPA or USP TMP connectors or equal can be used in lieu of beveled plate for slopes from $3 / 12$ to $12 / 12$.

Double-beveled plate, connect to ridge with 2 rows 16d nails at 12" o.c.

Flange of AJS ${ }^{\circledR}$ Joists may be birdsmouth cut only at the low end of the joist. Birdsmouth cut AJS ${ }^{\oplus}$ joist must bear fully on plate, web stiffener required each side. Bottom flange shall be fully supported.

R07

Backer block required where top flange joist hanger load exceeds 250 lbs. Install tight to top flange.

WEB STIFFENER REQUIREMENTS

- See Web Stiffener Requirements on page 10.

PROTECT AJS ${ }^{\circledR}$ JOISTS FROM THE WEATHER

- AJS ${ }^{\circledR}$ Joists are intended only for applications that provide permanent protection from the weather. Bundles of AJS ${ }^{\circledR}$ Joists should be covered and stored off of the ground on stickers.

MAXIMUM SLOPE

- Unless otherwise noted, all roof details are valid for slopes of 12 in 12 or less.

VENTILATION

- The $1 \frac{1}{2}$ inch, pre-stamped knock-out holes spaced at 12 inches on center along the AJS ${ }^{\circledR}$ Joist may all be knocked out and used for cross ventilation. Deeper joists than what is structurally needed may be advantageous in ventilation design. Consult local building official and/or ventilation specialist for specific ventilation requirements.

BIRDSMOUTH CUTS

- AJS ${ }^{\oplus}$ Joists may be birdsmouth cut only at the low end support. AJS ${ }^{\circledR}$ Joists with birdsmouth cuts may cantilever up to 2'-6" past the low end support. The bottom flange must sit fully on the support and may not overhang the inside face of the support. High end supports and intermediate supports may not be birdsmouth cut.

Maximum clear span in feet and inches, based on horizontal spans.

115\% and 125\% Load Duration															
				AJS ${ }^{\circledR} 140$ Series 2½" Flange Width											
				$\begin{gathered} 911 / 2 " \\ \text { AJS }{ }^{\circledR} 140 \end{gathered}$			$\begin{gathered} 117 / "^{\prime \prime} \\ \text { AJS }^{\otimes} 140 \end{gathered}$			$\begin{gathered} 14 " \\ \text { AJS }^{\circledR} 140 \end{gathered}$			$\begin{gathered} 16 " \\ \text { AJS }^{\circledR} 140 \end{gathered}$		
		$\begin{aligned} & \text { Live } \\ & \text { Load } \\ & \text { [psf] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dead } \\ & \text { Load } \\ & {[\mathrm{psf}]} \\ & \hline \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{aligned} & 4 / 12 \\ & \text { or } \\ & \text { Less } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$
12" o.c.	Non- Snow 125\%	20	10	25'-2"	23'-9"	22'-0"	30'-1"	28'-5"	26'-4"	$34^{\prime}-4{ }^{\prime \prime}$	32'-4"	30'-0"	37'-10"	35'-11"	33'-4"
		20	15	23'-10"	22'-5"	20'-8"	28'-6"	26'-9"	24'-9"	$32^{\prime \prime-5 "}$	30'-6"	28'-2"	34'-11"	33'-10"	31'-3"
		20	20	22'-9"	21'-4"	19'-7"	27'-3"	25'-6"	23'-5"	$30^{\prime}-3^{\prime \prime}$	29'-0"	26'-8"	32'-7"	31'-6"	29'-7"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	23'-11"	22'-7"	21'-0"	28'-5"	$27^{\prime}-0{ }^{\prime \prime}$	25'-2"	$31^{\prime}-2$ "	30'-7"	28'-8"	$33^{\prime}-7{ }^{\prime \prime}$	32'-11"	31'-10"
		25	15	22'-10"	21'-6"	19'-10"	26'-6"	25'-8"	23'-9"	29'-1"	28'-4"	27'-1"	$31^{\prime \prime}-4$	30'-6"	29'-5"
		30	10	22'-10"	21'-8"	20'-2"	26'-7"	25'-11"	24'-2"	29'-2"	28'-8"	27'-6"	$31^{\prime \prime}-{ }^{\prime \prime}$	30'-11"	30'-2"
		30	15	21'-11"	20'-8"	19'-2"	25'-0"	24'-5"	22'-11"	27'-5"	26'-10"	25'-11"	29'-7"	28'-11"	28'-0"
		40	10	20'-10"	19'-11"	18'-10"	23'-9"	23'-5"	22'-6"	26'-2"	25'-9"	25'-3"	28'-2"	27'-9"	27'-2"
		40	15	19'-10"	19'-4"	18'-1"	22'-7"	22'-2"	21-7"	24'-10"	24'-4"	23'-9"	26'-9"	26'-3"	25'-7"
		50	10	19'-0"	18'-6"	17'-6"	21-8"	21^{-}-5"	21'-0"	23'-10"	23'-7"	23'-2"	$25^{\prime \prime} 8^{\prime \prime}$	25'-5"	25'-0"
		50	15	18'-3"	17'-11"	17'-2"	20'-10"	20'-6"	20'-0"	22'-10"	22'-6"	22'-0"	$24^{\prime}-8$ "	24'-3"	23'-8"
16" o.c.	Non- Snow 125\%	20	10	22'-10"	21'-6"	20'-0"	27'-4"	25'-9"	23'-11"	$30^{\prime}-5{ }^{\prime \prime}$	29'-4"	27'-3"	32'-9"	32'-0"	30'-3"
		20	15	21'-7"	20'-3"	18'-9"	25'-6"	24'-3"	22'-5"	28'-1"	27'-2"	25'-6"	30'-3"	29'-4"	28'-2"
		20	20	20'-7"	19'-3"	17'-9"	23'-10"	23'-0"	21'-3"	26'-2"	25'-3"	24'-1"	28'-2"	27'-3"	26'-0"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	21'-7"	20'-6"	19'-1"	24'-7"	24'-1"	22'-10"	27'-0"	26'-5"	25-8"	29'-1"	28'-6"	27-8"
		25	15	20'-1"	19'-5"	18'-0"	22'-11"	22'-4"	21'6"	$25^{\prime}-2{ }^{\prime \prime}$	$24^{\prime}-6{ }^{\prime \prime}$	23-8"	27'-1"	26'-5"	25'-6"
		30	10	20'-2"	19'-7"	18'-3"	23'-0"	22'-7"	21'-11"	25'-3"	24'-10"	24'-2"	27'-3"	26'-9"	26'-1"
		30	15	18'-11"	18'-6"	17'-5"	21-7"	21'-1"	20'5"	23'-9"	23'-2"	22'5"	$25^{\prime}-7{ }^{\prime \prime}$	25'-0"	24'-2"
		40	10	18'-0"	17'-9"	17'-1"	20'-7"	20'-3"	19'-10"	22'-7"	22'-3"	21'-10"	24'-4"	24'-0"	23'-6"
		40	15	17'-2"	16'-10"	16'-4"	19'-7"	19'-2"	18'-8"	21'-6"	21'-1"	20'-6"	23'-2"	22'-8"	22'-1"
		50	10	$16^{\prime}-5 "$	$16^{\prime}-3^{\prime \prime}$	15'-10"	18'-9"	18'-6"	18'-3"	20'-7"	20'-4"	20'-0"	22'-3"	21'-11"	21-7"
		50	15	15'-9"	$15^{\prime}-6{ }^{\prime \prime}$	$15^{\prime}-2$ "	18'-0"	$17^{\prime}-8{ }^{\prime \prime}$	17'-3"	19'-9"	19'-5"	19'-0"	$21^{\prime}-4{ }^{\prime \prime}$	20'-11"	20'-6"
19.2" o.c.	Non- Snow 125\%	20	10	21'-5"	20'-3"	18'-9"	25'-3"	24'-2"	22'-5"	27'-9"	27'-1"	25'-7"	29'-10"	29'-2"	28'-3"
		20	15	20'-3"	19'-1"	17'-7"	23'-3"	22'-7"	21'-1"	25'-7"	24'-10"	23'-10"	27'-7"	26'-9"	25'-8"
		20	20	19'-1"	18'-1"	16'-8"	21'-9"	21'-0"	19'-11"	23'-10"	23'-0"	22'-0"	25'-9"	24'-10"	23'-8"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	19'-8"	19'-3"	17'-11"	22'-5"	21'-11"	21'-4"	24'-7"	24'-1"	23'-5"	26'-6"	26'-0"	25'-3"
		25	15	18'-4"	17'-10"	16'-11"	20'-11"	20'-4"	19-7"	22'-11"	22'-4"	21-7"	24'-9"	24'-1"	23'-3"
		30	10	18'-5"	18'-1"	17'-2"	21-0"	20'-7"	20'-1"	23'-0"	22'-7"	22-1"	24'-10"	24'-5"	23'-9"
		30	15	17'-3"	16'-10"	16'-4"	19'-8"	19'-3"	18'-7"	21'-8"	21'-2"	20'-6"	23'-4"	22'-9"	22'-1"
		40	10	16'-5"	16'-2"	15'-10"	18'-9"	18'-6"	18'-1"	20'-7"	20'-4"	19'-11"	22'-2"	21'-11"	21'-5"
		40	15	15'-8"	$15^{\prime}-4 "$	14'-11"	17'-10"	17'-6"	17'-0"	19'-7"	19'-2"	18'-8"	21'-1"	20'-8"	20'-2"
		50	10	15'-0"	14'-10"	$14^{\prime}-7{ }^{\prime \prime}$	17'-1"	16'-11"	16'-7"	18'-10"	18-7"	18'-3"	20'-3"	20'-0"	19'-8"
		50	15	14'-4"	14'-2"	13'-10"	16'-5"	16'-1"	15'-9"	18'-0"	17'-9"	17'-4"	19'-5"	19'-1"	18-8"
24" o.c.	Non- Snow 125\%	20	10	19'-9"	18'-9"	17'-5"	22'-6"	22'-0"	20'-10"	24'-9"	24'-2"	23'-5"	26'-8"	26'-1"	25'-3"
		20	15	18'-3"	17'-8"	16'-3"	20'-10"	20'-2"	19'-4"	22'-10"	22'-2"	21'-3"	$24{ }^{\prime}-7{ }^{\prime \prime}$	23'-11"	22'-11"
		20	20	17'-0"	$16^{\prime}-5 "$	$15^{\prime}-5{ }^{\prime \prime}$	19'-5"	18'-9"	17'-10"	$21^{1}-4$ "	20'-7"	19'-8"	23'-0"	22'-2"	21'-2"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	17'-7"	17'-2"	$16^{\prime}-7{ }^{\prime \prime}$	20'-0"	19'-7"	19'-1"	22'-0"	21'6"	20'-11"	23'-8"	$23^{\prime}-3^{\prime \prime}$	22-7"
		25	15	16'-4"	15'-11"	15'-4"	18'-8"	18'-2"	17'-6"	20'-6"	20'-0"	19'-3"	22'-1"	21'-6"	20'-9"
		30	10	16'-5"	16'-1"	15'-9"	18'-9"	18'-5"	17'-11"	20'-7"	20'-2"	19'-8"	22'-2"	21'-9"	21'-3"
		30	15	15'-5"	15'-1"	14'-7"	17'-7"	17'-2"	16'-8"	19'-4"	18'-11"	18'-3"	20'-10"	20'-4"	19'-8"
		40	10	14'-8"	14'-6"	14'-2"	16'-9"	16'-6"	16'-2"	18'-5"	18'-2"	17'-9"	19'-10"	19'-7"	19'-2"
		40	15	13'-11"	13'-8"	$13^{\prime}-4^{\prime \prime}$	15'-11"	15'-7"	15'-2"	17'-6"	17'-2"	16'-8"	18'-10"	18'-6"	18-0"
		50	10	13'-5"	13'-3"	$13^{\prime}-0^{\prime \prime}$	$15^{\prime}-3{ }^{\prime \prime}$	$15^{\prime}-1$ "	14'-10"	16'-9"	16'-7"	16'-4"	18'-1"	17'-11"	17'-5"
		50	15	12'-10"	$12^{\prime}-7{ }^{\prime \prime}$	12'-4"	14'-8"	14'-5"	14'-1"	$16^{\prime}-1{ }^{\prime \prime}$	15'-10"	15'-5"	17'-0"	16'-5"	15'-8"

- Table values are limited by shear, moment, total load deflection equal to L/180 and live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Table values represent the most restrictive of simple or multiple span applications. Analyze multiple span joists with the BC Calc software if the length of any span is less than half the length of an adjacent span.
- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Slope roof joists at least $1 / 4^{\prime \prime}$ over 12 " to minimize ponding.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Maximum clear span in feet and inches, based on horizontal spans.

115\% and 125\% Load Duration															
				AJS ${ }^{\circledR} 150$ Series 2½" Flange Width											
				$\begin{gathered} 91 / 2 " \\ \text { AJS® } 150 \end{gathered}$			117/8" AJS ${ }^{\circledR} 150$			$\begin{gathered} 14 " \\ \text { AJS }^{\oplus} 150 \end{gathered}$			$\begin{gathered} 16 " 1^{\text {AJS }}{ }^{\circledR} 150 \end{gathered}$		
		$\begin{aligned} & \text { Live } \\ & \text { Load } \\ & \text { [psf] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dead } \\ & \text { Load } \\ & \text { [psf] } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$
12" o.c.	Non- Snow 125\%	20	10	25'-9"	24'-3"	22'-6"	30'-9"	29'-0"	26'-11"	35'-1"	33'-1"	30'-8"	38 '-11"	36'-8"	34'-0"
		20	15	24'-4"	22'-10"	21'-1"	29'-2"	27'-5"	25'-3"	33'-2"	31'-2"	28'-9"	36'-10"	$34^{\prime}-7{ }^{\prime \prime}$	31'-11"
		20	20	23'-3"	21'-9"	20'-0"	27'-10"	26'-0"	23'-11"	31'-8"	29'-8"	27'-3"	34'-11"	32'-11"	30'-3"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	24'-5"	23'-1"	21'-6"	29'-3"	27'-8"	25'-9"	33'-3"	31'-6"	29'-3"	36'-0"	34'-11"	32'-6"
		25	15	23'-3"	21'-11"	20'-4"	27'-11"	26'-3"	$24^{\prime \prime}-4{ }^{\prime \prime}$	31'-2"	29'-11"	27-8"	33'-7"	32'-9"	30'-9"
		30	10	23'-4"	22'-1"	20'-7"	27'-11"	26'-6"	24'-8"	31'-4"	30'-2"	28-1"	33'-9"	33'-1"	31'-2"
		30	15	22'-5"	21'-1"	19'-7"	26'-10"	25'-3"	23'-6"	29'-5"	28'-9"	26'-9"	31'-9"	31'-0"	29'-8"
		40	10	21'-3"	$20^{\prime}-4 "$	19'-3"	25'-5"	$24^{\prime}-5^{\prime \prime}$	23'-0"	28'-0"	27-7"	26'-3"	$30^{\prime}-2{ }^{\prime \prime}$	29'-9"	29'-1"
		40	15	20'-11"	19'-9"	18'-5"	24'-3"	23'-8"	22'-1"	26'-8"	26'-1"	25'-2"	28'-8"	28'-2"	27'-5"
		50	10	19'-8"	18'-10"	17'-11"	23'-3"	22'-7"	21'-5"	25'-7"	25'-3"	24'-5"	27'-7"	27'-3"	26'-9"
		50	15	19'-7"	18'-9"	17'-6"	22'-4"	21'-11"	$21^{\prime \prime}-0^{\prime \prime}$	24'-6"	24'-1"	23'-7"	26'-5"	26'-0"	25'-5"
16" o.c.	Non- Snow 125\%	20	10	23'-4"	22'-0"	20'-5"	27'-11"	26'-4"	24'-5"	31'-9"	30'-0"	27'-10"	35'-1"	33'-3"	30'-10"
		20	15	22'-1"	20'-9"	19'-2"	26'-5"	24'-10"	22'-11"	30'-1"	28'-3"	26'-1"	32'-5"	31'-4"	28'-11"
		20	20	21'-1"	19'-8"	18'-1"	$25^{\prime}-2{ }^{\prime \prime}$	23'-7"	$21^{1-8 "}$	28'-1"	26'-11"	24'-9"	$30^{\prime}-3 "$	29'-2"	27'-5"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	22'-1"	20'-11"	19'-6"	26'-4"	25'-1"	23'-4"	28'-11"	28'-4"	26'-7"	31'-2"	30'-6"	29'-6"
		25	15	21'-1"	19'-10"	$18^{\prime}-5^{\prime \prime}$	24'-7"	23'-9"	22'0"	27'-0"	26'-3"	25-1"	29'-1"	28'-4"	27'-4"
		30	10	21'-2"	20'-0"	18'-8"	24'-8"	24'-0"	22'-4"	27'-1"	26'-7"	25'-6"	29'-2"	28'-8"	27'-11"
		30	15	20'-3"	19'-1"	17'-9"	23'-2'	22'-8"	21'-3"	25'-5"	24'-10"	24'-1"	27'-5"	26'-9"	25'-11"
		40	10	19'-3"	18'-5"	17'-5"	22'-1"	21'-9"	20'-10"	24'-3"	23'-10"	23'-5"	26'-1"	25'-9"	25'-3"
		40	15	18'-5"	17'-11"	16'-8"	21'-0"	20'-7"	20'-0"	23'-0"	22'-7"	22'-0"	24'-10"	24'-4"	23'-8"
		50	10	17'-8"	17'-1"	$16^{\prime}-3{ }^{\prime \prime}$	20'-2"	19'-11"	19'-5"	22'-1"	21'-10"	21'-6"	23'-10"	23'-6"	23'-2"
		50	15	16'-11"	$16^{\prime}-8{ }^{\prime \prime}$	15'-10"	19'-4"	19'-0"	18'-7"	21'-2"	20'-10"	$20^{\prime}-4{ }^{\prime \prime}$	22'-10"	22'-6"	21'-11"
19.2" o.c.	NonSnow 125\%	20	10	21'-11"	20'-8"	19'-2"	26'-3"	24'-9"	22'-11"	29'-9"	28'-2"	26'-2"	32'-0"	31'-3"	29'-0"
		20	15	20'-9"	19'-6"	18'-0"	24'-10"	23'-4"	$21^{1}-6{ }^{\prime \prime}$	27'-5"	26'-7"	24'-6"	29'-7"	28'-8"	27'-2"
		20	20	19'-9"	$18^{\prime}-6{ }^{\prime \prime}$	17'-0"	23'-4"	22'-2"	20'-5"	25'-7"	24'-8"	23'-3"	27-7"	26'-7"	25'-5"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	20'-9"	19'-8"	18'-3"	24'-0"	23'-6"	21'-11"	26'-5"	25'-10"	24'-11"	28'-5"	27'-10"	27'-1"
		25	15	19'-8"	18'-8"	17'-3"	22'-5"	21'-10"	20'-8"	24'-7"	24'-0"	23'-1"	26'-6"	25'-10"	24'-11"
		30	10	19'-9"	18'-10"	17'-7"	22'-6"	22-1"	$21^{1}-0$ "	24'-8"	24'-3"	23'-8"	26'-7"	26'-2"	25-6"
		30	15	18'-7"	17'-11"	16'-8"	21'-2"	20'-8"	20'-0"	23'-3"	22'-8"	21-11"	25'-0"	24'-5"	23'-8"
		40	10	17'-8"	17'-4"	16'-4"	20'-1"	19'-10"	19'-5"	22'-1"	21'-9"	21'-4"	23'-10"	23'-6"	23'-0"
		40	15	16'-9"	16'-5"	$15^{\prime}-8{ }^{\prime \prime}$	19'-2"	18'-9"	18'-3"	21'-0"	20'-7"	20'-1"	22'-8"	22'-2"	21-7"
		50	10	16'-1'	15'-11"	$15^{\prime}-3{ }^{\prime \prime}$	18'-4"	18'-2"	17'-10"	20'-2"	19'-11"	19'-7"	21-9"	21-6"	21'-1"
		50	15	$15^{\prime}-5{ }^{\prime \prime}$	$15^{\prime}-2{ }^{\prime \prime}$	14'-10"	$17^{\prime}-7{ }^{\prime \prime}$	17'-4"	16'-11"	19'-4"	19'-0"	18'-7"	20'-10"	20'-6"	19'8"
24" o.c.	Non- Snow 125\%	20	10	20'-3"	19'-1"	17'-9"	24'-2"	22'-11"	21'-3"	26'-7"	25'-11"	24'-3"	28'-7"	27'-11"	26'-11"
		20	15	19'-2"	18'-0"	16'-8"	22-4"	21-7"	19'-11"	24'-6"	23'-9"	22'-8"	26'-5"	$25^{\prime}-7{ }^{\prime \prime}$	24'-7"
		20	20	18'-3"	17'-2"	15'-9"	20'-10"	20'-1"	18'-10"	22'-10"	22-1"	21-1"	24'-8"	23'-9"	22'-8"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	18'-10"	18'-2"	16'-11"	21'-6"	21'-0"	20'-3"	23'-7"	23'-1"	22'-5"	25'-5"	24'-11"	24'-2"
		25	15	17'-7"	17'-1"	16'-0"	20'-0"	19'-6"	18'-10"	22'-0"	21'-5"	20'-8"	23'-8"	23'-1"	22'-3"
		30	10	17'-8"	17'-4"	16'-3"	20'-1"	19'-9"	19'-3"	22'-1"	21-8"	21-2"	23'-9"	23'-4"	22'-9"
		30	15	16'-7"	16'-2'	15'-5"	18'-11"	18'-5"	17'-10"	20'-9"	20'-3"	19'-7"	22'-4"	21'-10"	21'-1"
		40	10	15'-9"	$15^{\prime}-6{ }^{\prime \prime}$	$15^{\prime}-2{ }^{\prime \prime}$	18'-0"	17'-8"	17'-4"	19'-9"	19'-5"	19'-1"	21'-3"	20'-11"	20'-6"
		40	15	$15^{\prime}-0{ }^{\prime \prime}$	$14^{\prime}-8{ }^{\prime \prime}$	14'-4"	17'-1"	16'-9"	16'-4"	18'-9"	18'-5"	17'-11"	20'-1"	19'-3"	18'-3"
		50	10	14'-5"	$14^{\prime}-2^{\prime \prime}$	14'-0"	16'-5"	16'-2"	15'-11"	18'-0"	17'-9"	17'-2"	18'-6"	18'-0"	17'-5"
		50	15	$13^{\prime}-9{ }^{\prime \prime}$	$13^{\prime}-7{ }^{\prime \prime}$	$13^{\prime}-3^{\prime \prime}$	15'-9"	15'-5"	15'-1"	16'-9"	$16^{\prime}-2{ }^{\prime \prime}$	15'-5"	17'-0"	$16^{\prime}-5{ }^{\prime \prime}$	15'-8"

[^0] for joist depths of 16 inches and less.

Maximum clear span in feet and inches, based on horizontal spans.

115\% and 125\% Load Duration

[^1]- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Slope roof joists at least $11 / 4$ " over 12 " to minimize ponding.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

115\% and 125\% Load Duration															
				AJS ${ }^{\circledR} 190$ Series 2½" Flange Width											
				$\begin{gathered} 91 ⁄ 2 " 19 \\ \text { AJS }^{\otimes 1} 190 \end{gathered}$			$\begin{gathered} 117 / "^{\prime \prime} \\ \text { AJS }^{\circledast} 190 \end{gathered}$			$\begin{gathered} 14 " \\ \text { AJS }^{\circledR} 190 \end{gathered}$			$\begin{gathered} 16^{\prime \prime} \\ \text { AJS }{ }^{\ominus} 190 \end{gathered}$		
		$\begin{aligned} & \text { Live } \\ & \text { Load } \\ & \text { [psf] } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Dead } \\ & \text { Load } \\ & \text { [psf] } \\ & \hline \end{aligned}$	$\begin{aligned} & 4 / 12 \\ & \text { or } \\ & \text { Less } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{aligned} & 4 / 12 \\ & \text { or } \\ & \text { Less } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{aligned} & 4 / 12 \\ & \text { or } \\ & \text { Less } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$
12" o.c.	Non- Snow 125\%	20	10	27'-9"	26'-2"	24'-3"	33'-2'	$31^{\prime \prime}-3 "$	29'-0"	37'-9"	35'-7"	33'-0"	41'-10"	39'-6"	36'-7"
		20	15	26'-3"	24'-8"	22'-9"	$31^{\prime}-5^{\prime \prime}$	29'-6"	27'-3"	35'-9"	33'-7"	$31^{1}-0 \mid$	39'-8"	$37^{\prime}-3{ }^{\prime \prime}$	34'-4"
		20	20	25'-1"	23'-6"	21'-7"	$30^{\prime}-0^{\prime \prime}$	28'-1"	25'-9"	34'-1"	31'-11"	29'-4"	37'-10"	35'-5"	32'-7"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	26'-4"	24'-11"	23'-2"	31'-6"	29'-9"	27'-8"	35'-10"	33'-10"	31'-6"	39'-9"	37-7"	34'-11"
		25	15	25'-2"	23'-8"	21'-11"	$30^{\prime}-0^{\prime \prime}$	28'-3"	$26^{\prime}-2$ "	$34^{\prime}-2{ }^{\prime \prime}$	32'-2"	29'-9"	37'-11"	35'-8"	33'-0"
		30	10	25'-2"	23'-10"	22'-3"	30'-1"	28'-6"	26'-7"	$34^{\prime}-3{ }^{\prime \prime}$	32'-5"	30'-3"	38'-0"	36'-0"	$33^{\prime}-7{ }^{\prime \prime}$
		30	15	24'-2"	22'-9"	21'-2"	28'-10"	$27^{\prime}-3{ }^{\prime \prime}$	25'-3"	32'-10"	31'-0"	28'-9"	36'-5"	34'-4"	31'-11"
		40	10	22'-11"	22'-0"	20'-9"	$27^{\prime}-5^{\prime \prime}$	26'-3"	24'-10"	31'-2"	29'-11"	28'-3"	$34^{\prime}-7{ }^{\prime \prime}$	33'-2"	31'-4"
		40	15	22'-7"	$21^{\prime}-4{ }^{\prime \prime}$	19'-11"	$27^{\prime}-0^{\prime \prime}$	$25^{\prime}-6{ }^{\prime \prime}$	23'-9"	30'-8"	29'-1"	27'-1"	33'-10"	32'-3"	30'-0"
		50	10	21'-3"	20'-4"	19'-4"	25'-4"	$24^{\prime}-4{ }^{\prime \prime}$	23'-1"	28'-11"	27'-8"	26'-3"	32'-0"	30'-9"	29'-2"
		50	15	21'-3"	20'-3"	18'-11"	25'-4"	24'-2'	22'-7"	28'-10"	27-6"	25'-8"	31'-1"	$30^{\prime}-6{ }^{\prime \prime}$	28'-6"
16" o.c.	Non- Snow 125\%	20	10	25'-2"	23'-9"	22'-0"	30'-1"	28'-4"	26'-4"	34'-2"	32'-3"	29'-11"	37'-11"	35'-9"	33'-2"
		20	15	23'-10"	22'-4"	20'-8"	28'-6"	26'-9"	24'-8"	32'-5"	30'-5"	28'-1"	35'-11"	33'-9"	31'-2"
		20	20	22'-9"	21'-3"	19'-7"	27'-2"	25'-5"	$23^{\prime}-4{ }^{\prime \prime}$	$30^{\prime}-11{ }^{\prime \prime}$	28'-11"	26'-7"	$34^{\prime}-3 "$	32'-1"	29'-6"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	23'-10"	22'-7"	21'-0"	28'-6"	27'-0"	25'-1"	32'-6"	30'-8"	28'-7"	36'-0"	34'-1"	31'-8"
		25	15	22'-9"	21-5"	19'-10"	27'-2"	25'-7"	23'-9"	31'-0"	29'-2"	27'-0"	34'-3"	32'-4"	29'-11"
		30	10	22'-10"	21-7"	20'-2"	27-3"	25'-10"	24'-1"	31'-0"	29'-5"	27'-5"	34'-4"	$32^{\prime}-7{ }^{\prime \prime}$	30'-5"
		30	15	21'-10"	20'-8"	19'-2"	26'-2"	24'-8"	22'-11"	29'-9"	28'-1"	26'-1"	32'-4"	$31^{\prime}-2{ }^{\prime \prime}$	28'-11"
		40	10	20'-9"	19'-11"	18'-10"	24'-10"	23'-10"	22'-6"	28'-3"	27'-1"	25'-7"	30'-9"	$30^{\prime}-1{ }^{\prime \prime}$	28'-5"
		40	15	20'-5"	19'-4"	18'-0"	24'-5"	23'-1"	21'-7"	27'-2"	26'-4"	24'-6"	29'-3"	28'-8"	27'-2"
		50	10	19'-2'	18'-5"	17'-6"	22'-11"	22'-0"	20'-11"	26'-1"	25'-1"	23'-10"	27'-10"	27'-2"	26'-3"
		50	15	19'-2"	18'-4"	$17^{\prime}-1{ }^{\prime \prime}$	22'-9"	21'-11"	20'-5"	25'-0"	24'-5"	23'-3"	$25^{\prime}-7{ }^{\prime \prime}$	24'-9"	23'-7"
19.2" o.c.	Non- Snow 125\%	20	10	23'-7"	22'-3"	20'-8"	28'-3"	26'-8"	24'-9"	32'-2"	30'-4"	28'-2"	35'-8"	$33^{\prime}-7{ }^{\prime \prime}$	31'-3"
		20	15	22'-4"	$21^{\prime}-0^{\prime \prime}$	19'-5"	26'-9"	25'-1"	23'-2"	30'-5"	28'-7"	26'-5"	33'-9"	31'-8"	29'3"
		20	20	21'-4"	20'-0"	18'-4"	25'-6"	23'-10"	21'-11"	29'-0"	27'-2"	$25^{\prime}-0^{\prime \prime}$	32'-2"	$30^{\prime}-2{ }^{\prime \prime}$	27-9"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	22'-5"	21'-2"	19'-9"	26'-10"	25'-4"	23'-7"	30'-6"	28'-10"	26'-10"	33'-6"	32'-0"	29'-9"
		25	15	21'-4"	20'-2"	18'-8"	25'-7"	$24^{\prime}-1{ }^{\prime \prime}$	$22^{\prime}-3^{\prime \prime}$	29'-0"	27'-5"	$25^{\prime}-4{ }^{\prime \prime}$	$31^{\prime \prime}-3^{\prime \prime}$	30'-5"	28'-2"
		30	10	21'-5"	20'-4"	18'-11"	25'-7"	$24^{\prime}-3^{\prime \prime}$	22'-8"	29'-1"	27-7"	25'-9"	31-4"	30'-8"	28'-7"
		30	15	20'-6"	19'-5"	18'-0"	24'-7"	23'-2"	21'-6"	27'-4"	26'-4"	24'-6"	29'-6"	28'-9"	27'-2"
		40	10	19'-6"	$18^{\prime}-8{ }^{\prime \prime}$	17'-8"	23'-3"	22'-4"	$21^{\prime \prime} \mathbf{1 ' ~}^{\prime \prime}$	26'-0"	25'-5"	$24^{\prime}-0{ }^{\prime \prime}$	27-9"	27-0"	25'-11"
		40	15	19'-2'	18'-2"	16'-11"	22'-6"	21'-8"	20'-3'	24'-9"	23'-10"	22'-7"	25'-2"	24'-2"	22'-11"
		50	10	18'-0"	17'-3"	16'-5"	21-6"	20'-8"	19'-8"	22'-10"	22'-3"	21'-6"	23'-2"	22-7"	21'-10"
		50	15	18'-0"	$17^{\prime}-2{ }^{\prime \prime}$	$16^{\prime}-1{ }^{\prime \prime}$	20'-7"	19'-11"	19'-0"	21'-0"	20'-3"	19'-4"	21-3"	20'-7"	19'-8"
24" o.c.	Non- Snow 125\%	20	10	21'-10"	20'-8"	19'-2"	26'-2"	24'-8"	22'-11"	29'-9"	28'-1"	26'-1"	33'-0"	31'-2"	28'-11"
		20	15	20'-8"	19'-5"	18'-0"	24'-9"	23'-3"	21'-6"	28'-2"	26'-6"	$24^{\prime}-5^{\prime \prime}$	31'-1"	29'-4"	27'-1"
		20	20	19'-9"	18'-6"	17'-0"	23'-7"	22'-1"	20'-4"	26'-10"	25'-2"	23'-2"	29'-0"	27'-9"	25'-3"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	20'-9"	19'-8"	18'-3"	24'-10"	23'-6"	21'-10"	27'-9"	26'-9"	24'-11"	29'-11"	29'-4"	27'-7"
		25	15	19'-9"	18'-8"	17'-3"	23'-7"	22'-3"	20'-8"	25'-11"	25'-3"	23'-6"	27'-6"	26'-1"	24'-3"
		30	10	19'-10"	18'-9"	17'-6"	23'-8"	22'-6"	21'-0"	26'-0"	25'-6"	23'-10"	27'-9"	26'-9"	25'-5"
		30	15	19'-0"	17'-11"	$16^{\prime}-8 "$	22'-3"	21'-5"	19'-11"	24'-2"	23'-0"	21-7"	24'-6"	23'-4"	21-11"
		40	10	18'-0"	$17^{\prime}-3{ }^{\prime \prime}$	$16^{\prime}-4 "$	21'-2"	20'-8"	19'-7"	21'-10"	21'-3"	20'-5"	22'-2"	$21^{\prime \prime}-6{ }^{\prime \prime}$	20'-8"
		40	15	17'-8"	16'-9"	15'-8"	19'-5"	18'-8"	17'-8"	19'-9"	19'-0"	18'-0"	20'-1"	19'-3"	18'-3"
		50	10	16'-8"	16'-0"	15'-2"	17'-11"	17'-6"	16'-11"	18'-2"	17'-9"	17'-2"	18'-6"	18'-0"	17'-5"
		50	15	$16^{\prime}-2{ }^{\prime \prime}$	$15^{\prime}-8{ }^{\prime \prime}$	14'-10"	$16^{\prime}-5{ }^{\prime \prime}$	$15^{\prime}-11^{\prime \prime}$	15'-2"	16'-9"	16'-2"	$15^{\prime}-5^{\prime \prime}$	17'-0"	16'-5"	15'-8"

- Table values are limited by shear, moment, total load deflection equal to $\mathrm{L} / 180$ and live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Table values represent the most restrictive of simple or multiple span applications. Analyze multiple span joists with the BC Calc software if the length of any span is less than half the length of an adjacent span.
- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less. 18" joists require web stiffeners at all bearing locations.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Slope roof joists at least $1 / 4$ " over 12 " to minimize ponding.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Maximum clear span in feet and inches, based on horizontal spans.

Allowable Uniform Roof Load (in pounds per linear foot [PLF])

115\% and 125\% Load Duration

Use of these tables should be limited to roof slopes of $31 / 2^{\prime \prime}$ per foot or less. For steeper slopes, see pages 16-20.												
Span Length	AJS ${ }^{\circledR} 140$ Series 2½" Flange Width											
	9½" AJS ${ }^{\text {® }} 140$			117/8" AJS ${ }^{\text {® }} 140$			14" AJS ${ }^{\text {® }} 140$			16" AJS® 140		
	Total Load		Deflect.L/240	Total Load		Deflect. L/240	Total Load		Deflect. L/240	Total Load		Deflect. L/240
	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	Non- Snow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		Snow (115\%)	NonSnow (125\%)		Snow (115\%)	Non- Snow (125\%)	
6	353	383	-	358	389	-	360	392	-	364	396	-
7	302	329	-	307	334	-	309	336	-	312	339	-
8	264	287	-	269	292	-	270	294	-	273	297	-
9	235	255	-	239	259	-	240	261	-	242	264	-
10	211	230	-	215	233	-	216	235	-	218	237	-
11	182	198	-	195	212	-	196	213	-	198	216	-
12	153	166	-	179	194	-	180	196	-	182	198	-
13	130	142	-	165	179	-	166	180	-	168	182	-
14	112	122	-	146	158	-	154	168	-	156	169	-
15	98	106	-	127	138	-	144	156	-	145	158	-
16	86	93	85	111	121	-	134	146	-	136	148	-
17	76	83	71	99	107	-	119	129	-	128	139	-
18	68	74	60	88	96	-	106	115	-	121	132	-
19	61	66	51	79	86	-	95	103	-	110	120	-
20	55	58	44	71	77	-	86	93	-	99	108	-
21	50	50	38	64	70	-	78	85	-	90	98	-
22	44	44	33	59	64	56	71	77	-	82	89	-
23				54	58	49	65	70	-	75	82	-
24				49	54	44	59	65	-	69	75	-
25				45	49	39	55	59	-	63	69	-
26				42	45	34	51	55	-	59	64	-
27							47	51	45	54	59	-
28							43	47	41	51	55	-
29							41	44	37	47	51	-
30										44	48	-
31										41	45	-
32												
33												
34												

- Total Load values are limited by shear, moment, or deflection equal to L/180.
- Deflection values (Deflect.) are limited by live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Both the Total Load and Deflection columns must be checked. Where a Deflection value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC ${ }^{\circledR}$ software if the length of any span is less than half the length of an adjacent span.
- Slope roof joists at least $1 / 4$ inch over 12 inches to minimize ponding.
- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Allowable Uniform Roof Load (in pounds per linear foot [PLF])

115\% and 125\% Load Duration

Use of these tables should be limited to roof slopes of $31 / 2^{\prime \prime}$ per foot or less.
For steeper slopes, see pages 16-20.

Span Length	AJS ${ }^{\circledR} 150$ Series 2½" Flange Width											
	91⁄2" AJS ${ }^{\circledR} 150$			117/8" AJS ${ }^{\circledR} 150$			14" AJS ${ }^{\circledR} 150$			16" AJS® 150		
	Total Load		Deflect.L/240	Total Load		Deflect. L/240	Total Load		Deflect.L/240	Total Load		Deflect. L/240
	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	Non- Snow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	
6	353	383	-	358	389	-	360	392	-	364	396	-
7	302	329	-	307	334	-	309	336	-	312	339	-
8	264	287	-	269	292	-	270	294	-	273	297	-
9	235	255	-	239	259	-	240	261	-	242	264	-
10	211	230	-	215	233	-	216	235	-	218	237	-
11	192	209	-	195	212	-	196	213	-	198	216	-
12	176	191	-	179	194	-	180	196	-	182	198	-
13	150	163	-	165	179	-	166	180	-	168	182	-
14	129	141	-	153	167	-	154	168	-	156	169	-
15	113	122	109	143	155	-	144	156	-	145	158	-
16	99	107	90	128	139	-	135	147	-	136	148	-
17	87	95	76	113	123	-	127	138	-	128	139	-
18	78	84	64	101	110	-	120	130	-	121	132	-
19	70	72	55	91	99	-	110	120	-	115	125	-
20	62	62	47	82	89	79	99	108	-	109	118	-
21	53	53	41	74	81	69	90	98	-	104	113	-
22	47	47	36	67	73	60	82	89	-	94	103	-
23	41	41	31	62	67	53	75	82	-	86	94	-
24				57	61	47	69	75	68	79	86	-
25				52	54	41	63	69	60	73	79	-
26				48	48	37	59	64	54	67	73	-
27				43	43	33	54	59	48	62	68	-
28							51	55	43	58	63	-
29							47	51	39	54	59	53
30							44	46	35	50	55	48
31							41	42	32	47	51	43
32										44	48	40
33										42	45	36
34												

- Total Load values are limited by shear, moment, or deflection equal to L/180.
- Deflection values (Deflect.) are limited by live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Both the Total Load and Deflection columns must be checked. Where a Deflection value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC ${ }^{\circledR}$ software if the length of any span is less than half the length of an adjacent span.
- Slope roof joists at least $1 / 4$ inch over 12 inches to minimize ponding.
- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Allowable Uniform Roof Load (in pounds per linear foot [PLF])

115\% and 125\% Load Duration

Use of these tables should be limited to roof slopes of $31 / 2^{\prime \prime}$ per foot or less. For steeper slopes, see pages 16-20.												
Span Length	AJS ${ }^{\circledR} 20$ Series 2½" Flange Width											
	9½ AJS ${ }^{\circledR} 20$			117/8" AJS ${ }^{\circledR} 20$			14" AJS ${ }^{\circledR} 20$			16" AJS ${ }^{\text {® }} 20$		
	Total Load		Deflect.									
	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	L/240	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	$\begin{gathered} \text { Non- } \\ \text { Snow } \\ (125 \%) \end{gathered}$	L/240	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	L/240	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	L/240
6	353	383	-	358	389	-	360	392	-	364	396	-
7	302	329	-	307	334	-	309	336	-	312	339	-
8	264	287	-	269	292	-	270	294	-	273	297	-
9	235	255	-	239	259	-	240	261	-	242	264	-
10	211	230	-	215	233	-	216	235	-	218	237	-
11	192	209	-	195	212	-	196	213	-	198	216	-
12	176	191	-	179	194	-	180	196	-	182	198	-
13	162	177	-	165	179	-	166	180	-	168	182	-
14	151	164	-	153	167	-	154	168	-	156	169	-
15	136	147	128	143	155	-	144	156	-	145	158	-
16	119	129	106	134	146	-	135	147	-	136	148	-
17	105	115	89	126	137	-	127	138	-	128	139	-
18	94	99	76	119	129	-	120	130	-	121	132	-
19	84	85	65	109	119	108	113	123	-	115	125	-
20	73	73	56	99	107	94	108	117	-	109	118	-
21	63	63	48	89	97	81	103	112	-	104	113	-
22	55	55	42	81	89	71	98	106	-	99	108	-
23	48	48	37	74	81	62	90	98	-	95	103	-
24	43	43	33	68	72	55	82	90	80	91	99	-
25				63	64	49	76	83	71	87	95	-
26				57	57	44	70	76	63	81	89	-
27				51	51	39	65	71	57	75	82	-
28				46	46	35	60	66	51	70	76	69
29				41	41	32	56	60	46	65	71	62
30							53	55	42	61	66	56
31							49	50	38	57	62	51
32							45	45	34	54	58	47
33							41	41	31	50	55	43
34										47	51	39
35										45	47	36
36										42	43	33
37										40	40	30
38												

- Total Load values are limited by shear, moment, or deflection equal to L/180.
- Deflection values (Deflect.) are limited by live load deflection equal to $\mathrm{L} / 240$. Check the local building code for other deflection limits that may apply.
- Both the Total Load and Deflection columns must be checked. Where a Deflection value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC ${ }^{\circledR}$ software if the length of any span is less than half the length of an adjacent span.
- Slope roof joists at least $1 / 4$ inch over 12 inches to minimize ponding.
- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Allowable Uniform Roof Load (in pounds per linear foot [PLF])

115\% and 125\% Load Duration

Use of these tables should be limited to roof slopes of $31 / 2^{\prime \prime}$ per foot or less.
For steeper slopes, see pages 16-20.

Span Length	AJS ${ }^{\circledR} 190$ Series 2½" Flange Width											
	9½" AJS $^{\circledR} 190$			117/8" AJS ${ }^{\circledR} 190$			14" AJS ${ }^{\text {® }} 190$			16" AJS ${ }^{\text {® }} 190$		
	Total Load		Deflect.	Total Load		Deflect.L/240	Total Load		Deflect. L/240	Total Load		Deflect. L/240
	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	L/240	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	
6	353	383	-	358	389	-	360	392	-	364	396	-
7	302	329	-	307	334	-	309	336	-	312	339	-
8	264	287	-	269	292	-	270	294	-	273	297	-
9	235	255	-	239	259	-	240	261	-	242	264	-
10	211	230	-	215	233	-	216	235	-	218	237	-
11	192	209	-	195	212	-	196	213	-	198	216	-
12	176	191	-	179	194	-	180	196	-	182	198	-
13	162	177	-	165	179	-	166	180	-	168	182	-
14	151	164	-	153	167	-	154	168	-	156	169	-
15	141	153	134	143	155	-	144	156	-	145	158	-
16	132	143	111	134	146	-	135	147	-	136	148	-
17	121	123	94	126	137	-	127	138	-	128	139	-
18	104	104	79	119	129	-	120	130	-	121	132	-
19	89	89	68	113	123	-	113	123	-	115	125	-
20	77	77	59	107	116	98	108	117	-	109	118	-
21	67	67	51	102	111	85	103	112	-	104	113	-
22	58	58	44	93	97	74	98	106	-	99	108	-
23	51	51	39	85	86	65	94	102	-	95	103	-
24	45	45	34	76	76	58	90	98	84	91	99	-
25	40	40	30	67	67	51	86	94	75	87	95	-
26				60	60	46	80	87	67	84	91	-
27				54	54	41	75	78	60	80	88	-
28				48	48	37	69	70	54	78	84	72
29				43	43	33	63	63	48	75	81	65
30							57	57	44	70	76	59
31							52	52	40	66	70	54
32							47	47	36	61	64	49
33							43	43	33	58	59	45
34							40	40	30	54	54	41
35										49	49	38
36										45	45	35
37										42	42	32
38												

- Total Load values are limited by shear, moment, or deflection equal to L/180.
- Deflection values (Deflect.) are limited by live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Both the Total Load and Deflection columns must be checked. Where a Deflection value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC ${ }^{\circledR}$ software if the length of any span is less than half the length of an adjacent span.
- Slope roof joists at least $1 / 4$ inch over 12 inches to minimize ponding.
- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Allowable Uniform Roof Load (in pounds per linear foot [PLF])

115\% and 125\% Load Duration

Use of these tables should be limited to roof slopes of $3 \underline{1} / 2^{\prime \prime}$ per foot or less. For steeper slopes, see pages 16-20.

Span Length	AJS ${ }^{\circledR} 25$ Series - 9½" - 16" Depths $3 / 8$ " Web Thickness - $31 / 2^{\prime \prime}$ Flange Width											
	91/2" AJS ${ }^{\text {® }} 25$			111/8" AJS ${ }^{\text {® }} 25$			14" AJS® 25			16" AJS® 25		
	Total Load		Deflect.	Total Load		Deflect.L/240	Total Load		Deflect. L/240	Total Load		Deflect. L/240
	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	$\begin{aligned} & \text { Non- } \\ & \text { Snow } \\ & (125 \%) \end{aligned}$	L/240	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	Non- Snow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	
6	356	387	-	358	389	-	360	392	-	364	396	-
7	305	332	-	307	334	-	309	336	-	312	339	-
8	267	290	-	269	292	-	270	294	-	273	297	-
9	237	258	-	239	259	-	240	261	-	242	264	-
10	214	232	-	215	233	-	216	235	-	218	237	-
11	194	211	-	195	212	-	196	213	-	198	216	-
12	178	193	-	179	194	-	180	196	-	182	198	-
13	164	179	-	165	179	-	166	180	-	168	182	-
14	152	166	-	153	167	-	154	168	-	156	169	-
15	142	155	-	143	155	-	144	156	-	145	158	-
16	133	145	-	134	146	-	135	147	-	136	148	-
17	125	136	121	126	137	-	127	138	-	128	139	-
18	118	129	103	119	129	-	120	130	-	121	132	-
19	112	116	88	113	123	-	113	123	-	115	125	-
20	100	100	76	107	116	-	108	117	-	109	118	-
21	87	87	66	102	111	-	103	112	-	104	113	-
22	76	76	58	93	102	-	98	106	-	99	108	-
23	67	67	51	85	93	-	94	102	-	95	103	-
24	59	59	45	78	85	75	90	98	-	91	99	-
25	52	52	40	72	79	67	86	94	-	87	95	-
26	46	46	35	67	73	59	80	87	-	84	91	-
27	42	42	32	62	67	53	75	81	-	80	88	-
28				58	63	48	69	75	-	78	84	-
29				54	57	43	65	70	63	75	81	-
30				50	51	39	60	66	57	70	76	-
31				47	47	35	56	61	52	66	71	-
32				42	42	32	53	58	47	61	67	-
33							50	54	43	58	63	-
34							47	51	39	54	59	53
35							44	47	36	51	56	49
36							42	44	33	48	53	45
37										46	50	41
38										43	47	38

- Total Load values are limited by shear, moment, or deflection equal to L/180.
- Deflection values (Deflect.) are limited by live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Both the Total Load and Deflection columns must be checked. Where a Deflection value is not shown, the Total Load value will control
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC ${ }^{\circledR}$ software if the length of any span is less than half the length of an adjacent span.
- Slope roof joists at least $1 / 4$ inch over 12 inches to minimize ponding.
- Table values assume minimum bearing lengths without web stiffeners for joist depths
of 16 inches and less. 18 " joists require web stiffeners at all bearing locations.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

AJS ${ }^{\circledR}$ Design Properties

AJS ${ }^{\circledR}$ Joist Series	Depth [inches]	Weight [plf]	Moment M [ft-lbs]	$\begin{gathered} \mathrm{El} \times 10^{6} \\ {\left[\mathrm{lb}-\mathrm{in}^{2}\right]} \end{gathered}$	$\begin{gathered} \mathrm{K} \times 10^{6} \\ {[\mathrm{lbs}]} \end{gathered}$	Shear [lbs	End Reaction [lbs]				Intermediate Reaction [lbs]			
							11⁄2" Bearing		31⁄2" Bearing		$31 / 2{ }^{1}$ Bearing		51/4" Bearing	
							No WS ${ }^{(1)}$	WS ${ }^{(2)}$	No WS ${ }^{(1)}$	WS ${ }^{(2)}$	No WS ${ }^{(1)}$	WS ${ }^{(2)}$	No WS ${ }^{(1)}$	WS ${ }^{(2)}$
$\begin{gathered} \text { AJS® } \\ 140 \end{gathered}$	91122	2.2	2450	182	5.2	1160	950	1240	1175	1480	2350	2450	2350	2450
	117/8	2.5	3175	310	6.6	1490	955	1335	1215	1595	2390	2800	2390	2800
	14	2.8	3825	457	7.8	1790	960	1420	1250	1700	2430	3130	2430	3130
	16	3.1	4435	623	9.0	2065	970	1500	1285	1800	2465	3435	2465	3435
$\begin{gathered} \text { AJS® } \\ 150 \end{gathered}$	91122	2.2	2820	194	5.2	1160	950	1240	1175	1480	2350	2450	2350	2450
	117/8	2.5	3650	331	6.6	1490	955	1335	1215	1595	2390	2800	2390	2800
	14	2.8	4390	487	7.8	1790	960	1420	1250	1700	2430	3130	2430	3130
	16	3.1	5090	664	9.0	2065	970	1500	1285	1800	2465	3435	2465	3435
$\begin{gathered} \text { AJS } \\ 20 \end{gathered}$	91122	2.5	3395	232	5.2	1160	950	1240	1175	1480	2350	2450	2350	2450
	117/8	2.8	4400	394	6.6	1490	955	1335	1215	1595	2390	2800	2390	2800
	14	3.0	5295	578	7.8	1790	960	1420	1250	1700	2430	3130	2430	3130
	16	3.3	6140	786	9.0	2065	970	1500	1285	1800	2465	3435	2465	3435
$\begin{gathered} \text { AJS® } \\ 190 \end{gathered}$	9112	2.5	3895	244	5.2	1160	950	1240	1175	1480	2350	2450	2350	2450
	117/8	2.8	5045	414	6.6	1490	955	1335	1215	1595	2390	2800	2390	2800
	14	3.0	6070	608	7.8	1790	960	1420	1250	1700	2430	3130	2430	3130
	16	3.3	7040	827	9.0	2065	970	1500	1285	1800	2465	3435	2465	3435
$\begin{gathered} \text { AJS } \\ 25 \end{gathered}$	91122	3.1	5370	322	5.3	1160	950	1240	1175	1480	2600	2850	2600	2850
	117/8	3.4	6960	545	6.7	1490	955	1335	1215	1595	2690	3190	2690	3190
	14	3.7	8380	798	7.9	1790	960	1420	1250	1700	2770	3500	2770	3500
	16	3.9	9720	1082	9.1	2065	970	1500	1285	1800	2850	3800	2850	3800

NOTES:
(1) No web stiffeners required.
(2) Web stiffeners required.
(3) Not applicable, web stiffeners required.

- Moment, shear and reaction values based upon a load duration of 100% and may be adjusted for other load durations.
- Design values listed are applicable for Allowable Stress Design (ASD).
- No additional repetitive member increase allowed.

BUILDING CODE EVALUATION REPORT

- ICC ESR 1144 (IBC, IRC)

Connection on Steel Beam

Connection with Hanger on Steel Beam

Hanger Connections to AJS Headers
F16D - Backer blocks shall be at least 12" long per hanger.

- Nails shall be clinched when possible.
- Verify capacity and fastening requirements of hangers and connectors.

BOISE CASCADE ${ }^{\circledR}$ Rimboard

BOISE CASCADE ${ }^{\circledR}$ Rimboard Product Profiles

*18 - 24 inch deep rimboard are special order products, contact local supplier or Boise Cascade representative for product availability.

BOISE CASCADE ${ }^{\circledR}$ Rimboard Properties

Product	Vertical Load Capacity						Maximum Floor Diaphragm Lateral Capacity [lb/ft]	Specific Gravity for Lateral Nail Design	Allowable Design Values			
	Uniform [plf]			Point [lb]								
	$\begin{aligned} & 16 " \\ & \text { 1epth } \\ & \text { \& Less } \end{aligned}$	$\begin{gathered} 18 " \& \\ 20 " \\ \text { Depth } \\ \text { \& Less } \end{gathered}$	$\begin{gathered} 22^{2 " \&} \\ 24^{\prime \prime} \\ \text { Depth } \\ \text { \& Less } \end{gathered}$	$\begin{aligned} & \text { 16" } \\ & \text { Depth } \\ & \text { \& Less } \end{aligned}$	$\begin{gathered} 18 " \& \\ 20 " \\ \text { Depth } \\ \text { \& Less } \end{gathered}$	$\begin{gathered} \text { 22" \& } \\ \text { 24" } \\ \text { Depth } \\ \text { \& Less } \end{gathered}$			Flexural Stress [$\mathrm{lb} / \mathrm{in}^{2}$]	Modulus of Elasticity $\left[\mathrm{lb} / \mathrm{in}^{2}\right]$	Horizontal Shear [$\mathrm{lb} / \mathrm{in}^{2}$]	Compression Perpendicula to Grain [lb/in²]
$\begin{aligned} & \text { 1" BIISE CASCADE }{ }^{\ominus} \\ & \text { RIMBOARD (2) \& } \\ & \text { 1"BOISE CASCADE }{ }^{\otimes} \text { RIMBOARD OSB }^{(2)} \end{aligned}$	3300	1650	1650	3500	3500	3500	180	0.5	Limit	ed span ca	pabilities,	see note 2
$11 /{ }^{1}$ BOISE CASCADE ${ }^{\ominus}$ RIMBOARD OSB	4400	3000	3000	3500	3500	3500	180	0.5	Limit	ed span ca	pabilities,	see note 2
$\stackrel{15 / 16^{\prime \prime}}{ } \text { VERSA-LAM } 1.41800{ }^{(1)}$	6000	5450	-	4450	4450	-	Permitted per building code for all nominal 2" thick framing blocked and unblocked diaphragms (4" nail spacing \& greater)	0.5	1800	1,400,000	225	525
VERSA-LAM ${ }^{13 / 4} 2.03100{ }^{(1)}$	5700	4300	-	4300	3900	-	Permitted per building code for all nominal 2" thick framing blocked and unblocked diaphragms (4" nail spacing \& greater)	0.5	2800	2,000,000	285	750

	Closest Allowable Nail Spacing - Narrow Face [in]					
Product	$\begin{aligned} & 8 \mathrm{~d} \\ & \text { Box } \end{aligned}$	$\begin{gathered} \text { 8d } \\ \text { Common } \\ \hline \end{gathered}$	$\begin{gathered} \text { 10d \& 12d } \\ \text { Box } \\ \hline \end{gathered}$	$\begin{aligned} & 16 \mathrm{~d} \\ & \text { Box } \\ & \hline \end{aligned}$	10d, 12d Common \& 16d Sinker	$\begin{aligned} & \text { 16d } \\ & \text { Common } \\ & \hline \end{aligned}$
$\begin{gathered} \text { 1" BOISE CASCADE® }{ }^{\circledR} \text { RIMBOARD }^{(2)} \\ \hline \end{gathered}$	3	3	-	-	-	-
1 " or $1 \frac{118 " ~ B O I S E ~ C A S C A D E ~}{}{ }^{\ominus}$ RIMBOARD OSB ${ }^{(2)}$	3	3	See note 2 for nailing information			
15/16" VERSA-LAM ${ }^{*} 1.41800{ }^{(1)}$	3	3	3	3	4	6
13/4" VERSA-LAM ${ }^{\otimes} 2.03100{ }^{(1)}$	2	3	3	3	4	6

Notes

1. Per ICC ESR-1040.
2. See Performance Rated Rim Boards, APA EWS \#W345K for further product information.
3. Not all products and depths may be available, check with Boise Cascade representative for product availability.

An Introduction to VERSA-LAM ${ }^{\circledR}$ Products

When you specify VERSA-LAM ${ }^{\circledR}$ laminated veneer headers/beams, you are building quality into your design. They are excellent as floor and roof framing supports or as headers for doors, windows and garage doors and columns.

Because they have no camber, VERSA-LAM ${ }^{\circledR}$ LVL products provide flatter, quieter floors, and consequently, the builder can expect happier customers with significantly fewer call backs.

VERSA-LAM ${ }^{\circledR}$ Beam Architectural Specifications

Scope: This work includes the complete furnishing and installation of all VERSALAM ${ }^{\circledR}$ beams as shown on the drawings, herein specified and necessary to complete the work.

Materials: Southern Pine or Douglas fir veneers, laminated in a press with all grain parallel with the length of the member. Glues used in lamination are phenol formaldehyde and isocyanate exterior-type adhesives which comply with ASTM D2559.

Design: VERSA-LAM ${ }^{\circledR}$ beams shall be sized and detailed to fit the dimensions and loads indicated on the plans. All designs shall be in accordance with allowable values developed in accordance with ASTM D5456 and listed in the governing
code evaluation service's report and section properties based upon standard engineering principles. Verification of design of the VERSA-LAM ${ }^{\circledR}$ beams by complete calculations shall be available upon request.

Drawings: Additional drawings showing layout and detail necessary for determining fit and placement in the buildings are (are not) to be provided by the supplier.

Fabrication: VERSA-LAM ${ }^{\circledR}$ beams shall be manufactured in a plant evaluated for fabrication by the governing code evaluation service and under the supervision of a third-party inspection agency listed by the corresponding evaluation service.

Storage and Installation: VERSA-LAM ${ }^{\circledR}$ beams, if stored prior to erection, shall be stored on stickers spaced a maximum of 15 ft . apart. Beams shall be stored on a dry, level surface and protected from the weather. They shall be handled with care so they are not damaged.
VERSA-LAM ${ }^{\circledR}$ beams are to be installed in accordance with the plans and Boise Cascade EWP's Installation Guide. Temporary construction loads which cause stresses beyond design limits are not permitted. Erection bracing shall be provided to assure adequate lateral support for the individual beams and the entire system until the sheathing material has been applied.

Codes: VERSA-LAM ${ }^{\circledR}$ beams shall be evaluated by a model code evaluation service.

Allowable Holes in VERSA-LAM ${ }^{\circledR}$ Beams

Notes

1. Square and rectangular holes are not permitted.
2. Round holes may be drilled or cut with a hole saw anywhere within the shaded area of the beam.
3. The horizontal distance between adjacent holes must be at least two times the size of the larger hole.
4. Do not drill more than three access holes in any four foot long section of beam.
5. The maximum round hole diameter permitted is:

Beam Depth	Max. Hole Diameter
$5^{1 / 22^{\prime \prime}}$	$3 / 4^{\prime \prime}$
$7^{11 / 4^{\prime \prime}}$	$1^{\prime \prime}$
$9^{1 / 1 / 4^{\prime \prime}}$ and greater	$2^{\prime \prime}$

End Bearing
6. These limitations apply to holes drilled for plumbing or wiring access only. The size and location of holes drilled for fasteners are governed by the provisions of the National Design Specification ${ }^{\circledR}$ for Wood Construction.
7. Beams deflect under load. Size holes to provide clearance where required.
8. This hole chart is valid for beams supporting uniform load only. For beams supporting concentrated loads or for beams with larger holes, contact Boise Cascade EWP Engineering.

VERSA-LAM ${ }^{\circledR}$ Installation Notes

- Minimum of $1 / 2$ " air space between beam and wall pocket or adequate barrier must be provided between beam and concrete/masonry.
- Adequate bearing shall be provided. If not shown on plans, please refer to load tables in your region's Specifier Guide.

Multiple Member Connectors

Side-Loaded Applications

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Members } \end{gathered}$	Maximum Uniform Side Load [plf]							
	Nailed		1/2" Dia. Through Bolt ${ }^{(1)}$			$5 / 8{ }^{\text {" Dia. Through Bolt }}{ }^{(1)}$		
	2 rows 16d Sinkers @ 12" o.c.	3 rows 16d Sinkers @ 12" o.c.	$\begin{aligned} & 2 \text { rows @ } \\ & 24 \text { " o.c. } \\ & \text { staggered } \end{aligned}$	$\begin{gathered} 2 \text { rows @ } \\ \text { 12" o.c. } \\ \text { staggered } \end{gathered}$	2 rows @ 6" o.c. staggered	$\begin{aligned} & 2 \text { rows @ } \\ & 24 \text { " o.c. } \end{aligned}$ staggered	$\begin{gathered} 2 \text { rows @ } \\ 12 " \text { o.c. } \\ \text { staggered } \end{gathered}$	2 rows @ 6" o.c. staggered
13/4" VERSA-LAM ${ }^{\text {® }}$ (Depths of 18" and less)								
2	470	705	505	1010	2020	560	1120	2245
$3^{(2)}$	350	525	375	755	1515	420	840	1685
$4^{(3)}$	use bolt	schedule	335	670	1345	370	745	1495
3½" VERSA-LAM ${ }^{\text {® }}$								
$2^{(3)}$	use bolt	schedule	855	1715	N/A	1125	2250	N/A
13/4" VERSA-LAM ${ }^{\text {® }}$ (Depths of 24")								
$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Members } \end{gathered}$	Nailed		1122^{1} Dia. Through Bolt ${ }^{(1)}$			5/8" Dia. Through Bolt ${ }^{(1)}$		
	3 rows 16d Sinkers @ 12" o.c.	4 rows 16d Sinkers @ 12" o.c.	$\begin{aligned} & 3 \text { rows @ } \\ & 244^{\prime \prime} \text { o.c. } 8^{\prime \prime} \\ & \text { staggered } \end{aligned}$	$\begin{aligned} & 3 \text { rows @ } \\ & \text { 18" o.c. } \mathbf{6}^{\prime \prime} \\ & \text { staggered } \end{aligned}$	$\begin{aligned} & 3 \text { rows @ } \\ & \text { 12" o.c. 4" } \\ & \text { staggered } \end{aligned}$	$\begin{aligned} & 3 \text { rows @ } \\ & 24 \text { " o.c. 8" } \\ & \text { staggered } \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \text { rows @ } \\ & \text { 18" o.c. } \mathrm{Gn}^{\prime \prime} \\ & \text { staggered } \end{aligned}$	$\begin{aligned} & 3 \text { rows @ } \\ & \text { 12" o.c. 4" } \\ & \text { staggered } \end{aligned}$
2	705	940	755	1010	1515	840	1120	1685
$3^{(2)}$	525	705	565	755	1135	630	840	1260
$4^{(3)}$	use bolt	schedule	505	670	1010	560	745	1120

1. Design values apply to common bolts that conform to ANSII ASME standard B18.21-1981 (ASTM A307 Grades A\&B, SAE J429 Grades 1 or 2 , or higher). A washer not less than a standard cut washer shall be between the wood and the bolt the edge of the beam to the bolt holes must be at least 2 " for
$1 / 2$ " bolts and $21 / 2$ " for $5 / 8$ " bolts. Bolt holes shall be the same diameter as the bolt.
2. The nail schedules shown apply to both sides of a 3 -member beam.
3. 7" wide beams must be top-loaded or loaded from both sides (lesser side shall be no less than 25% of opposite side).

Top-Loaded Applications

For top-loaded beams and beams with side loads with less than those shown:			
Plies	Depth	Nailing	Maximum Uniform Load From One Side
(2) $13 / 4$ " plies	Depths $117 / 8{ }^{\text {/ }}$ \& less	2 rows 16d box/sinker nails @ 12" o.c.	400 plf
	Depths 14"-18"	3 rows 16d box/sinker nails @ 12" o.c.	600 plf
	Depth $=24{ }^{\prime \prime}$	4 rows 16d box/sinker nails @ 12" o.c.	800 plf
(3) $13 / 4{ }^{\text {" }}$ plies ${ }^{(2)}$	Depths $11^{7} / 8^{\prime \prime}$ \& less	2 rows 16d box/sinker nails @ 12" o.c.	300 plf
	Depths 14" - 18"	3 rows 16d box/sinker nails @ 12" o.c.	450 plf
	Depth $=24{ }^{\prime \prime}$	4 rows 16d box/sinker nails @ 12" o.c.	600 plf
(4) $13 / 4$ " plies	Depths 18" \& less	2 rows 1/2" bolts @ 24" o.c., staggered	335 plf
	Depth $=24{ }^{\prime \prime}$	3 rows 1/2" bolts @ 24" o.c., staggered every 8"	505 plf
(2) $31 / 2 / 2$ plies	Depths 18" \& less	2 rows 1/2" bolts @ 24" o.c., staggered	855 plf
	Depth 20"-24"	3 rows 1/2" bolts @ 24" o.c., staggered every 8"	1285 plf

1. Beams wider than 7 " must be designed by the engineer of record.
2. All values in these tables may be increased by 15% for snow-load roofs and by 25% for non-snow load roofs where the building code allows.
3. Use allowable load tables or BC CALC® software to size beams.
4. An equivalent specific gravity of 0.5 may be used when designing
specific connections with VERSA-LAM ${ }^{*}$.
5. Connection values are based upon the 2005 NDS.
6. FastenMaster TrussLok, Simpson Strong-Tie SDS, and USP WS screws may also be used to connect multiple member VERSA-LAM® beams, contact Boise Cascade EWP Engineering for further information.

Designing Connections for Multiple VERSA-LAM ${ }^{\circledR}$ Members

When using multiple ply VERSA-LAM ${ }^{\circledR}$ beams to create a wider member, the connection of the plies is as critical as determining the beam size. When side loaded beams are not connected properly, the inside plies do not support their share of the load and thus the load-carrying capacity of the full member decreases significantly. The following is an example of how to size and connect a multiple-ply VERSA-LAM ${ }^{\circledR}$ floor beam.
Given: Beam shown below is supporting residential floor load (40 psf live load, 10 psf dead load) and is spanning $1^{\prime} 6^{\prime}-0^{\prime \prime}$. Beam depth is limited to 14 "

Find: A multiple $13 / 4$ ply VERSA-LAM ${ }^{\ominus}$ that is adequate to support the design loads and the member's proper connection schedule.

1. Calculate the tributary width that beam is supporting: $14^{\prime} / 2+18^{\prime} / 2=16^{\prime}$
2. Use PLF tables on pages 30-32 of ASG or BC CALC ${ }^{\circledR}$ to size beam. A Triple VERSA-LAM ${ }^{\otimes} 2.0310013 / 4 " \times 14$ " is found to adequately support the design loads
3. Calculate the maximum plf load from one side (the right side in this case).

Max. Side Load $=\left(18^{\prime} / 2\right) \times(40+10 \mathrm{psf})=450$ plf
4. Go to the Multiple Member Connection Table, Side-Loaded Applications, $13 / 4^{\prime \prime}$ VERSA-LAM ${ }^{\circledR}$, 3 members
5. The proper connection schedule must have a capacity greater than the max. side load:

Nailed: 3 rows 16 d sinkers @ 12" o.c:
525 plf is greater than 450 plf OK
Bolts: $1 / 2$ " diameter 2 rows @ 12" staggered:
755 plf is greater than 450 plf OK

VERSA-LAM ${ }^{\circledR} 2.03100$ (100\% Load Duration)

Total Load values are limited by shear, moment or deflection equal to L/240. Total Load values are the capacity of the beam in addition to its own weight.
Live Load values are limited by deflection equal to L/360. Check the local building code for other deflection limits that may apply.
Where a Live Load value is not shown, the Total Load value will control.
Table values represent the most restrictive of simple or multiple span applications. Span is measured center to center of the supports. Analyze multiple span beams with the BC CALC® software if the length of any span is less than half the length of an adjacent span.
Table values assume that lateral support is provided at each support and continuously along the top edge and applicable compression edges of the beam.

- Table values for Minimum Required Bearing Lengths are based on the allowable compression design value perpendicular to grain for the beam and the Total Load value shown. Other design considerations, such as a weaker support material, may warrant longer bearing lengths. Table values assume that support is provided across the full width of the beam.
For 2-ply, 3-ply or 4-ply beams; double, triple or quadruple Allowable Total Load and Allowable Live Load values. Minimum Required Bearing Lengths remain the same for any number of plies.
$13 / 4$ inch members deeper than 14 inches are to be used as multiple-member beams only.
This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\otimes}$ software.

VERSA-LAM ${ }^{\circledR} 2.03100$ (115\% Load Duration)

Total Load values are limited by shear, moment or deflection equal to $\mathrm{L} / 180$. Total Load values are the capacity of the beam in addition to its own weight.
Live Load values are limited by deflection equal to $L / 240$. Check the local building code for other deflection limits that may apply.
Where a Live Load value is not shown, the Total Load value will control
Table values represent the most restrictive of simple or multiple span applications. Span is measured center to center of the supports. Analyze multiple span beams with the BC CALC ${ }^{\oplus}$ software if the length of any span is less than half the length of an adjacent span.
Table values assume that lateral support is provided at each support and continuously along the top edge and applicable compression edges of the beam.

Table values for Minimum Required Bearing Lengths are based on the allowable compression design value perpendicular to grain for the beam and the Total Load value shown. Other design considerations such as a weaker support material, may warrant longer bearing lengths. Table values assume that support is provided across the full width of the beam.

- For 2-ply, 3-ply or 4-ply beams; double, triple or quadruple Allowable Total Load and Allowable Live Load values. Minimum Required Bearing Lengths remain the same for any number of plies.
- $13 / 4$ inch members deeper than 14 inches are to be used as multiple-member beams only.

This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.

VERSA-LAM ${ }^{\circledR}$ Roof Load Tables

VERSA-LAM ${ }^{\circledR} 2.03100$ (125\% Load Duration)

Total Load values are limited by shear, moment or deflection equal to L/180. Total Load values are the capacity of the beam in addition to its own weight.
Live Load values are limited by deflection equal to L/240. Check the local building code for other deflection limits that may apply.
Where a Live Load value is not shown, the Total Load value will control.
Table values represent the most restrictive of simple or multiple span applications. Span is measured center to center of the supports. Analyze multiple span beams with the BC CALC ${ }^{\oplus}$ software if the length of any span is less than half the length of an adjacent span.
Table values assume that lateral support is provided at each support and continuously along the top edge and applicable compression edges of the beam.

- Table values for Minimum Required Bearing Lengths are based on the allowable compression design value perpendicular to grain for the beam and the Total Load value shown. Other design considerations such as a weaker support material, may warrant longer bearing lengths. Table values assume that support is provided across the full width of the beam.
For 2-ply, 3-ply or 4-ply beams; double, triple or quadruple Allowable Total Load and Allowable Live Load values. Minimum Required Bearing Lengths remain the same for any number of plies.
$13 / 4$ inch members deeper than 14 inches are to be used as multiple-member beams only.
This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.

VERSA-LAM ${ }^{\circledR}$ Allowable Nailing and Design Values

Closest Allowable Nail Spacing

VERSA-LAM ${ }^{\circledR}$ \& VERSA-RIM ${ }^{\circledR}$ Products

Nail Size	Nailing Parallel to Glue Lines (Narrow Face) ${ }^{(1)}$						Nailing Perpendicular to Glue Lines (Wide Face)	
	$\begin{gathered} \text { VERSA-LAM }{ }^{\ominus} \\ 1.41800 \text { Rimboard } \\ 1^{5} / 1_{16}^{\prime \prime} \end{gathered}$		$\begin{gathered} \text { VERSA-LAM }{ }_{13 / 4^{\prime \prime}} \\ \hline \end{gathered}$		VERSA-LAM ${ }^{\circledR}$ $31 / 2 "$ \& Wider		All Products	
	O.C. [inches]	$\begin{aligned} & \text { End } \\ & \text { [inches] } \end{aligned}$	O.C. [inches]	$\begin{gathered} \text { End } \\ \text { [inches] } \end{gathered}$	O.C. [inches]	End [inches]	O.C. [inches]	$\begin{aligned} & \text { End } \\ & \text { [inches] } \end{aligned}$
8 d Box	3	$11 / 2$	2	1	2	1/2	2	1/2
8d Common	3	2	3	2	2	1	2	1
10d \& 12d Box	3	2	3	2	2	1	2	1
16d Box	3	2	3	2	2	1	2	1
10d \& 12d Common	4	3	4	3	2			2
16d Sinker	4	3	4	3	2	2	2	2
16d Common	6	4	6	3	2	2	2	2

- Offset and stagger nail rows from floor sheathing and wall sole plate.
- Simpson Strong-Tie A35 and LPT4 connectors may be attached to the side VERSA-LAM ${ }^{\circledast} /$ VERSA-RIM $^{\oplus}$. Use nails as specified by Simpson Strong-Tie.

Nailing Parallel to Glue Lines (Narrow Face)

Nailing Perpendicular to Glue Lines (Wide Face)

Nailing Notes

1) For $13 / 4$ " thickness and greater, 2 rows of nails (such as for a metal strap) are allowed (use ${ }^{112 " 1}$ minimum offset between rows and stagger nails)

VERSA-LAM ${ }^{\circledR}$ Design Values

Grade	Width [in]	$\begin{gathered} \text { Depth } \\ \text { [in] } \end{gathered}$	Weight [lb/tt]	Allowabl Shear [lb]	Allowable Moment [ft-lb]	Moment of Inertia [in ${ }^{4}$]	Grade	$\begin{gathered} \text { Wid } \\ \text { [in } \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { [in] } \end{aligned}$	Weight [lb/ft]	Allowable Shear [lb]	Allowable Moment [ft-lb]	Moment of Inertia [in4]		
	$11 / 2$	$31 / 2$	1.5	998	776	5.4		51/4	51/4	8.0	5237	6830	63.3		
		51/2	2.4	1568	1821	20.8			$51 / 2$	8.4	5486	7457	72.8		
			3.	2066	3069				$71 / 4$	11.0	7232	12566	166.7		
									9114	14.1	9227	19908	346.3		
	$13 / 4$	$31 / 2$	1.8	1164	1058	6.3			91/2	14.5	9476	20937	375.1		
		51/2	2.8	1829	2486	24.3			91/2		9476				
		71/4	3.7	2411	4189	55.6			111/4	17.1	11222	28814	622.9		
		911/4	4.7	3076	6636	115.4			117\%8	18.1	11845	31913	732.6		
		$91 / 2$	4.8	3159	6979	125.0			14	21.3	13965	43552	1200.5		
		1111/4	5.7	3741	9605	207.6						56046			
		117/8	6.0	3948	10638	244.2			16	24.4	15960		1792.0		
		14	7.1	4655	14517	400.2			18	27.4	17955	70011	2551.5		
		16	8.1	5320	18682	597.3			20	30.4	19950	85428	3500.0		
		18	9.1	5985	23337	850.5			24	36.5	23940	120549	6048.0		
		24	12.2	7980	40183	2016.0		7	911/4	16.6	12303	26544	461.7		
	$31 / 2$	51⁄2	5.6	3658	4971	48.5			$91 / 2$	17.1	12635	27916	500.1		
		$71 / 4$	7.4	4821	8377	111.1			91/2						
		911/4	9.4	6151	13272	230.8			111/4	20.2	14963	38419	830.6		
		9112	9.6	6318	13958	250.1			117/8	21.4	15794	42550	976.8		
		111/4	11.4	7481	19210	415.3			14	25.2	18620	58069	1600.7		
		117/8	12.1	7897	21275	488.4			16	28.8	21280	74728	2389.3		
		14	14.2	9310	29035	800.3			18	32.4	23940	93348	34020		
		16	16.2	10640	37364	1194.7									
		18	18.3	11970	46674	1701.0			20	36.0	26600	113904	4666.7		
		20	20.3	13300	56952	2333.3			24	43.2	31920	160732	8064.0		
Design Property			Grade		Modulus of Elasticity	Bending	Horizontal Shear		Tension Parallel to Grain	Compression Parallel to Grain	Compression Perpendicular to Grain		Equivalent Specifica Gravity for Fastener Design		
			$\mathrm{E}\left(\times 10^{6} \mathrm{psi}\right)^{(1)}$	$\mathrm{F}_{\mathrm{b}}(\mathrm{psi})^{(2)(3)}$	$\mathrm{F}_{\mathrm{v}}(\mathrm{psi})^{(2)(4)}$		$\mathrm{F}_{1}(\mathrm{psi})^{(2)(5)}$	$\mathrm{F}_{\mathrm{cl\mid}}(\mathrm{psi})^{(2)}$	$\mathrm{F}_{\mathrm{c}} \perp(\mathrm{psi})^{(1)(6)}$		(SG)				
VERSA-LAM ${ }^{\oplus}$ Beams					2.03100		2.0	3100	28		2150	3000	75		0.5
VERSA-LAM ${ }^{\oplus}$ Studs			1.72650		1.7	2650	28		1650	3000	75		0.5		
VERSA-LAM ${ }^{\oplus}$ Columns			1.82750		1.8	2750	28		1825	3000	75		0.5		

[^2]5. Tension value shall be multiplied by a length factor, (4/L) ${ }^{1 / 8}$ where $L=$ member length [ft]. Use $L=4$ for members less than four feet long.
6. Stress applied parallel to the gluelines.

* Design properties are limited to dry conditions of use where the maximum moisture content of the material will not exceed 16%.

VERSA-STUD ${ }^{\circledR} 1.72650$

Allowable Design Values

Product	Bending $F_{b}[p s i]$	Compression Parallel to Grain $F_{c}[p s i]$	Modulus of Elasticity $E[p s i]$	Horizontal Shear $F_{v}[p s i]$
VERSA-STUD ${ }^{\text {E }} \mathbf{1 . 7 2 6 5 0}$	$\mathbf{2 6 5 0}$	$\mathbf{3 0 0 0}$	$\mathbf{1 , 7 0 0 , 0 0 0}$	$\mathbf{2 8 5}$
Spruce Pine Fir (North) \# 1/2 Grade	875	1150	$1,400,000$	135
Hem-Fir\#2 Grade	850	1300	$1,300,000$	150
Western Woods \# 2 Grade	675	900	$1,000,000$	135

Notes:

- Design values are for loads applied to the narrow face of the studs.
- Dimension lumber values taken from 2005 Edition, NDS Design Values for Wood Construction (per 2006 IBC/IRC).
- Repetitive member and size factors have not been applied.

For further design information, please see VERSA-STUD 1.72650 Eastern Tall Wall Guide.

BC FRAMER

New BC FRAMER ${ }^{\circledR}$ represents a huge technological leap to help you improve the efficiency and profitability of your engineered wood products business. Boise Cascade will provide you what we believe is now the industry's best design software, offering far greater productivity than even our current version of BC FRAMER ${ }^{\circledR}$. This new software package will help your design department work faster and accomplish more. You don't get paid to do drawings, but at least now you can do them in less time, and better.

- Shrink design time with BC FRAMER ${ }^{\circledR}$ model sharing.
- Save time \& prevent mistakes with best-in-industry file integration.
- Experience the efficiencies of BC FRAMER ${ }^{\circledR}$ whole house modeling.
- Draw floor and wall plans simultaneously with BC FRAMER ${ }^{\circledR}$:
- Check the plan every possible way with BC FRAMER® ${ }^{\circledR}$ full 3-D viewer.
- Create a master plan and multiple options that can be quickly selected and exported to a plot-specific file in a few minutes a fraction of the time it could have taken in the past.
Information can also be obtained at 1-800-405-5969 or email us at EWPSupport@BC.com.

BC CALC ${ }^{\circledR}$ 4.0 Sizing Software

$B C$ CALC ${ }^{\circledR}$ is simple to use, yet robust enough to analyze most all joist, beam, and column applications. Once an analysis is run, the user may print an easy-to-read design report that displays the span and load information with the analysis results.
BC COLUMN ${ }^{\circledR}$ has now been merged into BC CALC ${ }^{\circledR}$, allowing the sizing of joists, beams, rafters, columns, and studs all in one convenient program.
In addition to BCl^{\oplus} \& AJS ${ }^{\oplus}$ Joists, VERSA-LAM ${ }^{\circledR}$, and BOISE GLULAM ${ }^{\circledR}$, BC CALC ${ }^{\circledR}$ also offers the analysis of solid sawn lumber and timber members. Thus BC CALC ${ }^{\circledR}$ is the only program needed to analyze structural wood members.
I Ele Eat Yow brobact Berber Iook whidow ubp

Analysis for Engineered Wood Products
Boise Cascade has provided BC CALC ${ }^{\circledR}$ free of charge to the design community since 1994.

COMPUTER REQUIREMENTS

PC with any current version of MS Windows ${ }^{\circledR}$, along with an internet connection. For questions regarding BC CALC ${ }^{\circledR}$, call 1-800-405-5969 or email EWPSupport@BC.com.

To Download BC CALC US,
http://www.bc.com/wood/ewp/software/bccalc.html

Framing Connectors - Simpson Strong-Tie ${ }^{\circledR}$

Single Joist - Top Flange					
Joist Depth	AJS ${ }^{\text {® }}$	Hanger	$\begin{gathered} \text { Capacity } \\ {[\mathrm{lbs}]} \end{gathered}$	Header	$\mathrm{ig}_{\text {Joist }}$
912"	$\begin{aligned} & 20 / 1401 \\ & 150 / 190 \end{aligned}$	ITS2.56/9.5	1006	6-10d	-
	25	ITS3.56/9.5	1006	6-10d	-
117/8"	$\begin{aligned} & 20 / 140 \\ & 150 / 190 \end{aligned}$	ITS2.56/11.88	1020	6-10d	-
	25	ITS3.56/11.88	1020	6-10d	-
14"	$\begin{gathered} 20 / 1401 \\ 150190 \end{gathered}$	ITS2.56/14	1032	6-10d	-
	25	ITS3.56/14	1032	6-10d	-
16"	$\begin{aligned} & 20 / 1401 \\ & 150 / 190 \end{aligned}$	ITS2.56/16	1048	6-10d	-
	25	ITS3.56/16	1048	6-10d	-

Single Joist - Face Mount					
Joist Depth9½"	AJS ${ }^{\text {® }}$	Hanger	Capacity [lbs]	Nailing	
				Header	Joist
	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	IUS2.56/9.5	950	8-10d	-
	25	IUS3.56/9.5	1006	10-10d	-
117/8"	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	IUS2.56/11.88	1020	10-10d	-
	25	IUS3.56/11.88	1020	12-10d	-
14"	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	IUS2.56/14	1032	12-10d	-
	25	IUS3.56/14	1032	12-10d	-
16"	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	IUS2.56/16	1048	14-10d	-
	25	IUS3.56/16	1048	14-10d	-

Double Joist - Top Flange					
$\begin{aligned} & \begin{array}{l} \text { Joist } \\ \text { Depth } \end{array} \\ & \text { 9½" } \end{aligned}$	AJS®	Hanger Capacity $[\mathrm{lbs}]$		Nailing	
				Header	Joist
	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	MIT39.5-2	2125	8-16d	$2-10 \mathrm{dx1} 1 \times 2^{\prime \prime}$
	25	B7.12/9.5	2720	14-16d	6-16d
117/8"	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	MIT311.88-2	2170	8-16d	$2-10 \mathrm{dx} 1$ 1/2"
	25	B7.12/11.88	2930	14-16d	6-16d
14"	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	MIT314-2	2210	8-16d	$2-10 \mathrm{dx1} 1$ 12"
	25	B7.12/14	3120	14-16d	6-16d
16"	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	MIT5.12/16	2255	8-16d	2-10dx1½"
	25	B7.12/16	3305	14-16d	6-16d

Double Joist - Face Mount					
Joist Depth91⁄2"	AJS ${ }^{\text {® }}$	Hanger	Capacity [lbs]	Nailing	
				Header	Joist
	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	MIU5.12/9	2125	16-16d	$2-10 \mathrm{dx1} 1 \times 2^{\prime \prime}$
	25	HU410-2	2680	18-16d	8-16d
	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	MIU5.12/11	2170	20-16d	2-10dx $1^{1} / 2^{\prime \prime}$
	25	HU412-2	2930	22-16d	8-16d
	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	MIU5.12/14	2210	22-16d	$2-10 \mathrm{dx1} 1$ ²"
	25	HU414-2	3120	26-16d	12-16d
	$\begin{aligned} & 20 / 140 / \\ & 150 / 190 \end{aligned}$	MIU5.12/16	2255	24-16d	2-10dx11⁄2"
	25	HU414-2	3305	26-16d	12-16d

Framing Connectors - Simpson Strong-Tie ${ }^{\circledR}$

Face Mount Skewed 45° Joist Hanger					
$\begin{aligned} & \text { Joist } \\ & \text { Depth } \end{aligned}$	AJS ${ }^{\text {® }}$	Hanger	Capacity [lbs]	Header	$\text { ailing }_{\text {Joist }}$
9½"	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	SUR/L2.56/9	1139	14-16d	$2-10 \mathrm{dx1} 1$ 12 ${ }^{\prime \prime}$
	25	SUR/L410	1076	14-16d	6-16d
117/8"	$\begin{gathered} \text { 140/150 } \\ 20 / 190 \end{gathered}$	SUR/L2.56/11	1174	16-16d	2-10dx1½"
	25	SUR/L410	1101	14-16d	6-16d
14"	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	SUR/L2.56/14	1204	18-16d	$2-10 \mathrm{dx1} 1$ 12 ${ }^{\prime \prime}$
	25	SUR/L414	1123	18-16d	8-16d
16"	$\begin{gathered} \text { 140/150 } \\ 20 / 190 \end{gathered}$	SUR/L2.56/14	1235	18-16d	$2-10 d x 11 ⁄ 2 "$
	25	SUR/L414	1127	18-16d	8-16d

Field Slope and Skew Joist Hanger					
$\begin{aligned} & \text { Joist } \\ & \text { Depth } \end{aligned}$					
	AJS ${ }^{\circledR}$	Hanger	Capacity [lbs]	Header	ailing
91/2"	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	LSSUH310	1480	14-10d	12-10dx112"
	25	LSSU410	1480	14-10d	$12-10 \mathrm{dx} 1 \frac{1}{2} 2^{\prime \prime}$
117/8"	$\begin{gathered} \text { 140/150 } \\ 20 / 190 \end{gathered}$	LSSUH310	1595	14-10d	12-10dx112"
	25	LSSU410	1595	14-10d	12-10dx11⁄2"
14"	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	LSSUH310	1600	14-10d	12-10dx11⁄2"
	25	LSSU410	1625	14-10d	12-10dx $11 / 2$
16"	$\begin{aligned} & 140 / 150 \\ & 20 / 190 \end{aligned}$	-	-	-	-
	25	-	-	-	-

Adjustable Height Joist Hanger					
Joist Depth 91⁄2"	AJS ${ }^{\circledR}$	Hanger	Capacity [lbs]	Nailing Header Joist	
	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	THAI322	1330	6-10d	$2-10 \mathrm{dx1} 1 / 2^{\prime \prime}$
	25	THAI422	1330	6-10d	2-10dx11⁄2"
117/8"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	THAI322	1432	6-10d	2-10dx112"
	25	THAI422	1432	6-10d	2-10dx11⁄2"
14"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	THAI322	1525	6-10d	$2-10 \mathrm{dx1} 1 / 2^{\prime \prime}$
	25	THAI422	1525	6-10d	$2-10 \mathrm{dx} 11 / 2{ }^{\prime \prime}$
16"	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	-	-	-	-
	25	-	-	-	-

SIMPSON

Strong-Tie® CONNECTORS
For more information, call ${ }^{\circledR}$ Simpson Strong-Tie at 1-800-999-5099 or visit their website at
www. strongtie.com

Bold Italic hangers require web stiffeners.
Capacities will vary with different nailing criteria and/or support conditions; contact supplier or Simpson Strong-Tie ${ }^{\circledR}$ for further information.
Capacity values shown are either hanger capacity values (see support requirements below) or AJS Joist end reaction capacities - whichever is less.

- All capacity values are downward loads at 100% load duration.
- Use sloped seat hangers and beveled web stiffeners when AJS® Joist slope exceeds $1 / 4$ " per foot.
Leave $1 / 16^{\prime \prime}$ " clearance ($1 / 8$ " maximum) between the end of the supported joist and the head of the hanger.

Framing Connectors - USP Structural Connectors ${ }^{\circledR}$

Single Joist - Top Flange

$\begin{aligned} & \hline \text { Joist } \\ & \text { Depth } \\ & 9 ½ " \end{aligned}$	AJS®	Hanger	Capacity [lbs]	Nailing	
	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	TFL2595	1006	6-10d	2-10dx11⁄2"
	25	THO35950	1048	10-10d	$2-10 \mathrm{dx1} 1$ ²"
	$\begin{aligned} & \text { 140/150 } \\ & \text { 20/190 } \end{aligned}$	TFL25118	1020	6-10d	2-10dx11⁄2"
	25	THO35118	1068	10-10d	$2-10 \mathrm{dx1} 1$ ²"
	$\begin{gathered} \text { 140/150 } \\ \text { 20/190 } \end{gathered}$	TFL2514	1032	6-10d	2-10dx11⁄2"
	25	THO35140	1086	12-10d	$2-10 \mathrm{dx1} 1$ ²"
	$\begin{aligned} & 140 / 150 \\ & 20 / 190 \end{aligned}$	TFL2516	1048	6-10d	2-10dx11⁄2"
	25	THO35160	1107	12-10d	$2-10 \mathrm{dx1} 11 / 2^{\prime \prime}$

Double Joist - Top Flange					
THO Double					
Joist Depth	AJS ${ }^{\text {® }}$	Hanger	Capacity	Nailing	
			[lbs]	Header	Joist
9½"	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	THO25950-2	2237	10-16d	6-10d
	25	BPH7195	2690	10-16d	6-10d
117/8"	$\begin{gathered} \text { 140/150 } \\ 20 / 190 \end{gathered}$	THO25118-2	2300	10-16d	6-10d
	25	BPH71118	3060	10-16d	6-10d
14"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	THO25140-2	2355	12-16d	6-10d
	25	BPH7114	3260	10-16d	6-10d
16"	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	THO25160-2	2412	12-16d	6-10d
	25	BPH7116	3452	10-16d	6-10d

Single Joist - Face Mount

			$2 \underbrace{}_{\mathrm{THF}}$		
Joist Depth	AJS®	Hanger	Capacity [lbs]	Nailing	
				Header	Joist
91/2"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	THF25925	1062	12-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	25	THF35925	1062	12-10d	$2-10 \mathrm{dx} \times 1 / 2^{\prime \prime}$
117/8"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	THF25112	1085	14-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	25	THF35112	1085	16-10d	2-10dx11⁄2"
14"	$\begin{gathered} \text { 140/150 } \\ 20 / 190 \end{gathered}$	THF25140	1105	18-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	25	THF35140	1105	20-10d	2-10dx $11 / 2{ }^{1 /}$
16"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	THF25160	1127	22-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	25	THF35157	1127	22-10d	2-10dx11⁄2"

Double Joist - Face Mount					
THF Double					
Joist Depth$9 ½ "$	AJS ${ }^{\circledR}$	Hanger	Capacity	Nailing	
				Header	Joist
	$\begin{aligned} & 140 / 150 \\ & 20 / 190 \end{aligned}$	THF25925-2	1390	12-10d	6-10d
	25	HD7100	1690	12-10d	6-10d
117/8"	$\begin{aligned} & 140 / 150 \\ & 20 / 190 \end{aligned}$	THF25112-2	1855	16-10d	6-10d
	25	HD7120	2255	16-10d	6-10d
14"	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	THF25140-2	2210	20-10d	6-10d
	25	HD7140	2820	20-10d	8-10d
16"	$\begin{aligned} & 140 / 150 \\ & 2 / 190 \end{aligned}$	THF25160-2	2255	24-10d	8-10d
	25	HD7160	3305	24-10d	8-10d

Framing Connectors - USP Structural Connectors ${ }^{\circledR}$

Face Mount Skewed 45° Joist Hanger					
Joist Depth	AJS ${ }^{\text {® }}$	Hanger	Capacity		ailing
	AJS	Hanger	[lbs]	Header	Joist
	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	SKH2520L/R	992	14-10d	10-10dx11⁄2"
91/2"	25	SKH410L/R	1062	16-16d	10-16d
117/8"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	SKH2520L/R	1003	14-10d	$10-10 \mathrm{dx} 111 /{ }^{\prime \prime}$
	25	SKH410L/R	1085	16-16d	10-16d
14"	$\begin{gathered} \text { 140/150 } \\ 20 / 190 \end{gathered}$	SKH2524L/R	1014	16-10d	10-10dx11⁄2"
	25	SKH414L/R	1105	22-16d	10-16d
16"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	SKH2524L/R	1029	16-10d	10-10dx11⁄2"
	25	SKH414L/R	1127	22-16d	10-16d

Field Slope and Skew Joist Hanger					
LSSH					
$\begin{array}{\|l} \hline \text { Joist } \\ \text { Depth } \\ \\ 9 ½ 12 \end{array}$	AJS®	Hanger	Capacity [lbs]	Nailing	
				Header	Joist
	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	LSSH25	1420	14-16d	$12-10 \mathrm{dx1} 112^{\prime \prime}$
	25	LSSH35	1420	14-16d	12-10dx11⁄2"
117/8"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	LSSH25	1530	14-16d	$12-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	25	LSSH35	1530	14-16d	$12-10 \mathrm{dx} 11 / 2^{\prime \prime}$
14"	$\begin{gathered} \text { 140/150 } \\ 20 / 190 \end{gathered}$	LSSH25	1630	14-16d	12-10dx11⁄2"
	25	LSSH35	1630	14-16d	$12-10 \mathrm{dx} 11 / 2^{\prime \prime}$
16"	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	LSSH35	1725	14-16d	$12-10 \mathrm{dx1} 1 / 2^{\prime \prime}$
	25	LSSH35	1725	14-16d	$12-10 \mathrm{dx} 11 / 2^{\prime \prime}$

Adjustable Height Joist Hanger					
$\begin{array}{\|c\|} \hline \text { Joist } \\ \text { Depth } \\ \\ 91 / 2 " \end{array}$	AJS ${ }^{\circledR}$	Hanger	Capacity [bs]	Nailing	
	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	MSH322	1270	16-10d	$4-10 \mathrm{dx} 1$ ½"
	25	MSH422IF	1270	22-10d	4-10d
117/8"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	MSH322	1367	16-10d	$4-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	25	MSH422IF	1367	22-10d	4-10d
14"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	MSH322	1455	16-10d	$4-10 \mathrm{dx} 1^{1 ⁄ 2}{ }^{\prime \prime}$
	25	MSH422IF	1455	22-10d	4-10d
16"	$\begin{gathered} 140 / 150 \\ 20 / 190 \end{gathered}$	MSH322	1413	16-10d	$4-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	25	MSH422IF	1413	22-10d	4-10d

For more information, contact USP Structural Connectors ${ }^{\circledR}$ at 1-800-328-5934 or www.uspconnectors.com

General Notes

- Bold Italic hangers required web stiffeners.
- Capacities will vary with different nailing criteria and/or support conditions: contact supplier or USP Structural Connectors ${ }^{\circledR}$ for further information. Capacity values shown are either hanger capacity values (see support requirements below) or AJS ${ }^{\circledR}$ Joist end reaction capacities - whichever is less. All capacity values are downward loads at 100% load duration. Use sloped seat hangers and beveled web stiffeners when AJS ${ }^{\circledR}$ Joist slope exceeds $1 / 4$ " per foot.
Leave $1 / 16^{\prime \prime}$ " clearance ($1 / 8^{\prime \prime}$ maximum) between the end of the supported joist and the head of the hanger.

Variable Pitch Joist Connector					
TM					
Joist Depth $91 / 2 "$	AJS ${ }^{\text {® }}$	Hanger	$\begin{gathered} \text { Capacity } \\ {[\text { lbs }]} \end{gathered}$	FastenerTop Plate Rafter	
	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	TMP25	1175	6-10d	$4-10 \mathrm{dx1} 1$ 12 ${ }^{\prime \prime}$
	25	TMP4	1175	6-10d	4-10dx1½"
	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	TMP25	1215	6-10d	4-10dx1½"
	25	TMP4	1215	6-10d	4-10dx1½"
	$\begin{aligned} & \text { 140/150 } \\ & 20 / 190 \end{aligned}$	TMP25	1250	6-10d	$4-10 \mathrm{dx} 11 ⁄ 2$ "
	25	TMP4	1250	6-10d	4-10dx1½"
	$\begin{gathered} \text { 140/150 } \\ 20 / 190 \end{gathered}$	TMP25	1285	6-10d	4-10dx1½"
	25	TMP4	1285	6-10d	4-10dx1½"

For applications where AJS® is used as a beam to support joist hangers, consult USP Structural Connectors ${ }^{\circledR}$ for capacity reduction.
Support Requirements

- Support material assumed to be Boise Cascade structural composite lumber or sawn lumber (Douglas fir or southern pine species).
Minimum support width for single- and double-joist top mount hangers is $3^{\prime \prime}:\left(11 / 2^{\prime \prime}\right.$ for THO hangers).
- Minimum support width for face mount hangers with 10d and 16d nails is $13 / 4^{\prime \prime}$ and $2^{2 "}$, respectively.

BOISE CASCADE, TREE-IN-A-CIRCLE, BCI, BC CALC, BC COLUMN, BC FRAMER, BC RIM BOARD, BOISE GLULAM, SIMPLE FRAMING SYSTEM, VERSA-LAM, VERSA-RIM, VERSA-STRAND, and VERSA-STUD are trademarks of Boise Cascade Company or its affiliates.

For information about

The information in this document pertains to use in the UNITED STATES ONLY, Allowable Stress Design. Refer to the ALLJOIST Specifier Guide Canada for use in Canada, Limit States Design. Boise Cascade Engineered Wood Products, including sales terms and conditions, warranties and disclaimers, visit our website at www.BCewp.com

Your Dealer is:

Boise Cascade Engineered Wood Products

[^0]: - Table values are limited by shear, moment, total load deflection equal to $\mathrm{L} / 180$ and live load deflection equal to $\mathrm{L} / 240$. Check the local building code for other deflection limits that may apply.
 - Table values represent the most restrictive of simple or multiple span applications. Analyze multiple span joists with the BC Calc software if the length of any span is less than half the length of an adjacent span.
 - Table values assume minimum bearing lengths without web stiffeners
 - This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
 - Slope roof joists at least $1 / 4$ " over 12 " to minimize ponding.
 - Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

[^1]: - Table values are limited by shear, moment, total load deflection equal to L/180 and live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
 - Table values represent the most restrictive of simple or multiple span applications. Analyze multiple span joists with the BC Calc software if the length of any span is less than half the length of an adjacent span.

[^2]: 1. This value cannot be adjusted for load duration.
 2. This value is based upon a load duration of 100% and may be adjusted for other load durations.
 3. Fiber stress bending value shall be multiplied by the depth factor, $(12 / \mathrm{d})^{1 / 9}$ where $\mathrm{d}=$ member depth [in].
 4. Stress applied perpendicular to the gluelines.
